Alenka Rozanec

BAZE PODATKOV
o® | ‘

VISOKOSOLSKO SREDISCE NOVO MESTO

FAKULTETA ZA UPRAVLJANJE, POSLOVANJE IN INFORMATIKO
NOVO MESTO

Alenka Rozanec

BAZE PODATKOV

Novo mesto, 2017

Dr. Alenka RoZanec
BAZE PODATKOV

Izdala in zalozZila © Fakulteta za upravljanje, poslovanje in informatiko Novo mesto
Uredila dr. Jasmina Starc

Recenziral dr. Ivan Gerli¢

Za jezikovno neoporecnost je odgovorna avtorica ucbenika.

Graficna priprava Bojan Nose, VisokoSolsko sredis¢e Novo mesto

Katalozni zapis o publikaciji (CIP)
pripravili v Narodni in univerzitetni knjiznici v Ljubljani

COBISS.SI-ID=290575360

ISBN 978-961-6309-42-4 (pdf)

KAZALO

I UVOD V PODATKOVNE BAZEoooiiiiiieitieeet ettt 12
1.1 Podatek in INfOrMACI]A.......cc.eeiiieiieeiieiie ettt ettt et e e s e e teesaaeenbeessaeeneeas 12

1.2 PodatkoVNga DAZa......cc.eoiiiiiiiiiiiiieeceee ettt 16

1.3 Tri-nivojska predstavitev podatkov v podatkovni baziccceeeevveeeiieeiciiiciiiecieceee, 17

1.4 Mesto podatkovne baze v posSloVNEM SISEEMUeeeuiieriiiieeiieeeiee e 19

2 SISTEM ZA UPRAVLJANIJE S PODATKOVNO BAZO.......ccocoviiiiiiiiinieeeeneeeeene 21
2.1 Prednosti uporabe SUPBcccoiiiiiiiieeee ettt 21

2.2 FUNKCIE SUPB ...ttt ettt et sttt ettt e e e eseennens 22
2.2.1 Shranjevanje, pridobivanje in spreminjanje podatkov.........ccccceceeververeeneenieneene 23

2.2.2 Dostopnost kataloga PB............ccccoiiiiiiiiiiiiiiiecee e 23

2.2.3 Podpora transSakCIJam.........cueeervieeiiieeiiieeiieeeieeesieeeeaeeesseeessseeessseessseeessneesseeenns 23

2.2.4 Socasni dostop do podatkovne bazeccccvvieriiiiiiiieeiiie e 24

2.2.5 Obnavljanje podatkovne baze po nesreCah............ccovveeiiienieeiieniieeiieieeee e 25

2.2.6 AVOTiZACIJSKE SEOTIEVEeeeuiieiiieiiieiie ettt ettt 26

2.2.7 INtEGIIENE SLOTIEVE ...eiuiiieiiieeeiieeeiiieesteeerteeeteeesteeesteeesaaeeessseeesaeeeseeeesseesnseaenns 27

2.2.8 Storitev podatkovne NEOAVISNOStL.....cccurieiuiieeiiieeiieeeiie ettt 27

2.2.9 Administratorska 0T0dJaccocvieiiiiiiiiie e 27

2.2.10 Podpora KOMUNICITANU........eevuiiiiiiiieeiieiie ettt ettt et te et esaeeteeeeaeensee e 27

2.3 Komponente 0kolja SUPBcccoiiiiiiiiieeceeee ettt 28

2.4 Delovanje SUPBL........oooiiieie et e e e e baeeenaee s 29

2.5 Naloge skrbnika podatkovne baze............cccvieiiiiiiiiieiiiece e 30

3 PODATKOVNI MODELI IN VRSTE SUPB.....cc.cooiiiiiiiiiiiteieneeeeeteeee e 32
3.1 Hierarhi¢ni podatkovni MOdE]..........cccuiieiiiiiiiiiecieecee e 34

3.2 Mrezni podatkovni MOAEL..........oooiiiieiiieeiie et 34

3.3 Relacijski podatkovni MOdelcccuieiiiiiiiiiiiiiciee e 35

3.4 Objektni podatkovni MOAElc.oooiiiiiiiiiieiieie e 35

3.5 Objektno-relacijski podatkovni modelccooeviiiiiiiioiiieieeee e 35

3.6 Primerjava razli¢nih vrst podatkovnih modelov oziroma SUPBccccoecviiiiiiennnnn, 36

4 KONCEPTUALNO NACRTOVANJE PODATKOVNE BAZEcoccoooviiiieieeesesreneeene. 38
4.1 Tehnike konceptualnega nacrtoOvVanjacccceccveeerciieeriieeriieerieeeeteeeeveeeeeeeereeeereeesneees 38

4.2 Gradniki konceptualnega modela...........c.ceoviiiiiiiiiiiiieeiieeee e 39
i N w5 4 U 1 (1213 3§ o TR P SR UPSRR 39

4.2.2 ALTTDUL. .ottt sttt 39

4.2.3 RAZIMEIJE ..eeeieeiiieiie ettt ettt ettt ettt ettt e et e et e enbeenseeesbeenseesnseenseennne 41

4.3 Konceptualno nacrtovanje podatkovne baze na primeru skladis¢a...........ccceevevveencrieennenn. 45
4.3.1 OPIS OMENEuveeiiiieiiieeeieeeeiee ettt e e steeeateeetaeesteeessaeeessseeessseeesseeansseessseesseeenns 45

4.3.2 lzdelava konceptualnega podatkovnega modelacccovveriiiiniiniiinieniieenne 45

4.3.3 Konceptualni podatkovni model skladiS€a..........cccooeviieiiiiniiniiiiniiiiieieeeeee 45

4.4 Pristopi k nacrtovanju podatkovne baze...........cceevevieeeiieeiiieeiiie e 46

RELACIISKA PODATKOVNA BAZA ...ttt 49

T B T Tod {1 S R 1ST0 & | I USRS PUSRPP 49
S.10T 0 REIACIIA 1.ttt et et ettt e e b e enbeennne 49

5.1.2 Relacijska ShEMAaccccuiiiiiiiiiiiiiciiee e 50

5.1.3 Funkcionalne 0dVISNOSccuiiiuiiiiiiiiieiiecite ettt 50

5.2 LOZICNO NACTEOVANJCvveeeerieeiieeeiiieeeiteeestteeetaeessaeessseeesssaeesssaeansseeesseeassseesssseesssseessseeenns 51
5.2.1 Transformacija konceptualnega modela v relacijski modelcccccoeeviininnncnn 51

5.2.2 Omejitve nad podatkovno Dazoccceeeeuieriiiiiiieiiiciiecc e 53

5.2.3 Logi¢no nacrtovanje podatkovne baze na primeru picerije........oocvervvreriureerereeens 54

5.3 NOIMAHZACIJA ..vveiiviieeiiieeeiieeeieeeetee et e ettt e et e e e tteesteeesstaeessbeeesseeesseeassseesssseesssseessseeenns 57
5.3.1 Vrste azurnih anomalij.........ccccoeeiiiiiiiiiiiiie e 58
5.3.1.1 Do0dajanje ZaAPISOVc.eereeeriieriieeiiieniieeieeniteeteesteeereeseeesteesseesnseenseesnseens 59

5.3.1.2 BIiSANJE ZAPISOV...eeeiuiierrieeiiieeieieeeitteesteeesseeesseeessseeessseesnsseessssessseeessnes 61

5.3.1.3 SPreminjanje ZapiSOV.....c.ueerueeerreeerureerirreesitreesseeesseeessseesssseessssessssseessnes 62

5.3.2 Prvanormalna obliKa........cccoooiiiiiiiiiiiiiieieeeee e 63

5.3.3 Druga normalna obliKac.oociiiiiiiiiiiiiii e 64

5.3.4 Tretja normalna obliKa..........ccceiieiiiiiiiiecie e 64

5.3.5 Cetrta poslovna normalna ObIKao.co.eweveeueveieceeeeeeeeeeeeeeeee e, 65

5.3.6 Normalizacija relacije z uporabo podatkov nenormalizirane tabele...................... 65

5.4 FiZIiCNO NACTEOVANTEveeviieiiieiieeiiesiieeteeseteeteestteeteesiteesseesseeeseessseenseessseenseessseenseesssessens 68
5.4.1 Izdelava SQL SKIIPLE ...oeeiiiieiiiieeiie ettt ettt e e e e e e e e e saee e 68
5.4.2 DatoteCNe OTZANIZACI]C...cccvveeerreerrreerreeesreeessreeesseeessseeessseesssseesssseessssesssseeessseeenns 69

5.4.3 INAEKSITANJC....cuiiiiiieiiieiieiie ettt ettt ettt et et e et e esbeessbeesaesnaeenbeennne 70

5.4.4 Analiza tranSakCi] ...cceeeeuierieeiiieeiieeiieete ettt 70

5.4.5 Ocena velikosti podatkovne bazecccveeeiiieiiiieiiie e 71

5.4.6 Varnost podatkovne Daze...........ccccuiiiiiiiiciiieiieeceeeee ettt 71

5.4.7 DenormMaliZaACIja......ccoueeiuieriieeiieriieeiieiie et e eite et e eite et e s eeeteeeabeebeessaeesaesnaeenseennne 71

5.5 Spremljanje delovanja in optimizacija podatkovne bazeccccceevueeeiienienciieniienieene. 77
JEZIKI ZA DELO Z RELACIJISKO PODATKOVNO BAZOoooveiieieieeeeeeeee 80
6.1 Relacijska al@ebIa........c.ceeiiiiiiiiieiie e et e e eaae e 80
6.2 RelaCijSKI TACUN ..eouviiiiieiieciiee ettt ettt et e et e sabe e b e e eaeeneeas 80
0.3 SQL ettt et h ettt h ettt st e b et sbe e 81
6.3.1 SQL DDttt ettt et eae s 83
6.3.1.1 Kreiranje tabelccceeviiiiiiiiieiiieeiee et 85

6.3.1.2 Kreiranje indekSOV........ccouiiiiiiiiiiiieie ittt 86

6.3.1.3 Kreiranje pogledovccciiiiiiiiiiiieiecieee e 86

6.3.1.4 Definiranje OMEJILEVccueeervieeiiieeiieeeiieeeieeesieeesteeesaeeeereesaeeeessaeesnns 87

6.3.1.5 Brisanje gradnikov podatkovne baze..........c.cccccvverviiienciiiiniieeeeee 89

6.3.1.6 Dodeljevanje in 0dvZemanje PravicCccceeeveerieerieeneesiieenieeereenieeseeens 89

6.3.2 SQL DML ..ottt ettt sttt 90
6.3.2.1 Dodajanje podatkov - INSERTcccoviiiiiiiiniiecieeee e 91

6.3.2.2 Spreminjanje podatkov — UPDATEcccooiiiiiiieeeeeeeeee e 93

6.3.2.3 Brisanje podatkov — DELETEcccccoiiiiiiiiiieeeeeee e 93

6.3.2.4 Poizvedbe — SELECTcccoiiiiiiiiiiicieicieeseeeseeeeeeteeesee e 94

6.4.1 Enostavne POIZVEADEc.eeviiiiiiiiiieiiie ittt ettt ettt 111

6.4.2 Uporaba agregatnih funkKCijcccvieeiiiiiiiieiieccecee e 113

6.5 Izvajanje in optimizacija POIZVEAD.........ccviieeiiiiiiiiieciee e 115
6.5.1 O 1zvajanju POIZVEADccueiiiieiiicii ettt 115

6.5.2 DekompoziCija POIZVEADEoccueiiiiiiiieiiieiieeieee ettt 117

6.5.3 Optimizacija POIZVEADEccccuiieiiiieciie et e 118

7 OBJEKTNA PODATKOVNA BAZA ...ttt 123
7.1 ObJektni SUPBooiiiiiiiieeee ettt st 123
7.2 Nacrtovanje objektne podatkovne baze..........ccceeecvvieeiiieiiiieiiiecceeeee e 124
721 RAZICA .ottt ettt ettt ettt 125
T.2.2 ASOCIACTIA ..uvveeueieeiiieniieeiieeite ettt et e et e bt e site et e siaeebeesabeesseessbeenseesnseenseessseeseennsaans 127

7.2.3 Druge posebnosti objektnega nacrtovanja...........cccueecveerueerieeneeniieenienieesieeenens 129

7.3 RazSirjeni podatKOVNT tIPl......ccuieeiiieeiiieeiiieete et etee e e ae e e e e eeaeeeraeesraeeenaeees 130
7.4 Standard ODMGi......c..cooiiiiiiiiie ettt ettt st 130
7.4.1 Objektni MOdELccueiiiiiiiiiiieiiece et 131

7.4.2 ODL (Object Definition Language).........ccoeeeeeieerienieeniieeieeniie e eiiesveesieeeineens 132

7.4.3 OQL (Object Query Language)cccceeeueeruierieeniieeieeiieeieesiee e eieesveeneee e ens 134

8 ORODJA ZA DELO S PODATKOVNIMI BAZAMIcccooiiiieeieeeeeeeee e 137
8.1 SAP Sybase POWETDESIZNETcccuiiriiiiiiiieeiieieeie ettt e e 137
8.1.1 Izdelava konceptualnega modela trgovine.............ooceeeiienieeiienienieeniecieeeee 137

8.1.2 Izdelava logi¢nega modela trgoVINecccueeeeieieriieeriie et eee e 140

8.1.3 Izdelava fizicnega modela trgOVINEccceevviieriieiiiie et 143

8.2 Oracle SQL Developer Data Modelercocveriieiieiiieiieiecieeeeeceee e 144
8.2.1 Izdelava logi¢nega modela KnjiZnice.........ccceevveeiienieeiiinieeiieieeieeee e 144

8.2.2 lIzdelava relacijskega modela KnjiZnicecccocveeeviieeriieeniieeiee e 146

8.2.3 Izdelava fizicnega modela KnjiZnicCe.........cceccuveeriiieiieeeiiie e 147

8.3 OraCle APEX ... ottt ettt et st 148
8.3.1 Kreiranje baze iz predhodno pripravljene SQL sKripte.........cceevveviienrercieenennne. 149

8.3.2 Pregled in ro¢no kreiranje razli¢nih objektov podatkovne baze.......................... 150

8.3.3 Uporaba jezika SQL vV APEX-U......cccoiiiiiiiiiieteeeeeee e 152

B4 IMIS ACCESS .ttt ettt ettt nees 155
8.4.1 Rocno kreiranje podatkovne baze v MS ACCESUc.cevvieriiiriieiieiiieiieeieeee, 155

8.4.2 Poizvedovanje z uporabo jezika QBEccccooooiiiiiiiieeee e 156

9 RESITVE NALOGoiiiiieieeeeeeeeeeeeeeeeee et ses s ssanes s seenassnenean 159
9.1 ReSitve Nalog POZLaVIA 4oioiiiiiieiiee e et 159
0.2 ReSitve Nalog POZlavia 5.2 ...coouiiiiieiieeieete et e 160
0.3 ReSitve nalog POZlav]a 5.3 ..o e e aee s 161
9.4 ReSitve Nalog POZLAVIA 6oeeneiieeiiieeee et e e s 161

10 LITERATURA IN VIRIL.....ooiiiiiiiiieeee et 168

KAZALO SLIK

Slika 1:
Slika 2:
Slika 3:
Slika 4:
Slika 5:
Slika 6:
Slika 7:
Slika 8:
Slika 9:

Slika 10:
Slika 11:
Slika 12:

Informacijska vrednost s €aSom Pada........ccceeecuieriiiiiiieiieeiieie e 14
Tri-nivojska predstavitev podatkov v podatkovni baziccceeeveeeviieeiiieecieeeieeeeeee 18
Podatkovna NEOAVISIIOSTcouiiiiiiiiiiii ettt 19
SUPB ettt ettt ettt b bt et sh et ettt nae e 21
Zaporedje izvajanja transakcij T1 in T2 ...ooociiiiiiiiiieeiieece e 24
OKOIJE SUPB ...ttt ettt ettt et e s teenbeeneesseenbesneenseeseeneans 28
Z.81adba SUPB ... et e e e aae e ennes 30
Podatkovni MOAElcc.oiiiiiiiiiiiiieee e 33
Primerjava razli¢nih vrst SUPB ter datote€nega SiStemacceeceeveererieneenieniienieeniennns 37

Primeri entitetnih tipov pri nacrtovanju podatkovne baze visoke Sole...........ccccveeevveennnenn. 39
Primeri atributov entitetnega tipa STUDENTcovoiuimeeieeeeeeeeeeeeeee e 40
Dologitev obveznosti atributov ter podatkovnih tipov entitetnega tipa STUDENT........... 41

Slika 13: RAZMEIJA 1N STEVIOSTL...ceuiiiiiieiieeiiieiie ettt ete et ete et e st e et e seteesbeesaaeeseesaaeesseessseeseessseens 41
Slika 14: Grafi¢ni prikaz Stevnosti in 0bveznosti razmerij/POVEZAV........cc.eeeeveeerereeeiuveesireeesireeennnens 42
Slika 15: Primeri razmerij/povezav med entitetnimi tIP1.....ceveeerveeerieeerieeeiieeeeereeeeieeeeneeeeveeeseneees 42
Slika 16: Primer konceptualnega modela visoke SOle..........cccieiiiiiiiiiiiniieiieeiieeee e 43
Slika 17: Primer reKurzivnega raZmeIja.........cc.veeuieruierueeniieeieeieesreenieesreeseessseenseessseesseesssessseessseens 43
Slika 18: Primer specializacije entitetnega tipa OSEBAcocooiiiiiiiieeeeeeeeeeeee e 44
Slika 19: Konceptualni podatkovni model podjetja Hramba............cccoeeeiieiiiiiniiiecieecieeeeeee, 46
Slika 20: Transformacije pri prehodu s konceptualnega na relacijski logi¢ni model 51
Slika 21: Primer preslikave razmerja $tevnosti ena proti MNOZO0........ccceevveevereeriereereenieeiereereennens 52
Slika 22: Primer preslikave razmerja Stevnosti mnogo proti MNOZ0ccveeeevveeereveeeiueeerireeesiveeenneens 52
Slika 23: Primer logi¢nega modela ViSOKe SOLEccvieiiiieiiiieiiieee e 53
Slika 24: Primeri integritetnih OMEJIEVcevuiiriieiiieiiieiieeie ettt ettt beesaeeseesaaeens 54
Slika 25: Konceptualni MOde]l PICEITJE......ecuieriiiriieiieiiieiie et eiee ettt eve et e sre et e seteenbeeseaeeseesnaeens 55
Slika 26: Konceptualni model VIAEOteKecovviiiiiiiiciiice et 57
Slika 27: Primer skripte v jeziku SQL za kreiranje relacijske podatkovne baze za Oracle 10g........ 68
Slika 28: Primer skripte v jeziku SQL za kreiranje indeksov za Oracle 10g..........cccceevveriieniennnnnn. 70
Slika 29: Matrika med relacijami in tranSakCijamicc.eevueeierierierienieieeesee e 71
Slika 30: Logi¢ni podatkovni model publiKaci].........cccueeevuiieiiiieiiiieiiecee e 76
Slika 31: Logi¢ni podatkovni model Studentskega IS..........ccccviieiiiiiiiiieieeeeeee e 77
Slika 32: Prikaz podatkov dveh tabel z uporabo pogleda placilo clanarine............cccceevevviernneennnn.. 87
Slika 33: Delovna povrsina za kreiranje QBE poizvedb orodja M'S ACCESScocvverviervieiieeniennee. 111
Slika 34: Poizvedba - izpis vseh trgovin iZ Celja........cccieviiiriiiiiieniieiieiieeieeee e 112
Slika 35: Poizvedba - podatki o trgovinah Muca copatarica iz Celja.........cceevveeevvieecieencieeeieeenne, 112
Slika 36: Poizvedba - podatki o trgovinah iz Celja ali Maribora............cccceeeevieeciieecieecieeeeeeee, 113
Slika 37: Poizvedba — prestej Stevilo postavk na posameznem raunucceceevereereenneeeenneenn 113
Slika 38: Poizvedba — izra¢un vrednosti posamezne poStavkecceevveeiienieeieenieeieenie e 114
Slika 39: Poizvedba — izracun skupnega zneska posameznega racuna...........ccceeevveeeevveeecveeenveeennne 115
Slika 40: Faze 1zvedbe POIZVEADEeiiiiiieeiiieciie ettt aee e e e e 116
Slika 41: Primer drevesa relacijske algebreoocivviiiiiiiiiiiiieeceee e 117
Slika 42: Relacijski model trgovskega podjetja v orodju MS ACCESSc.eevviereieeiieiieeiieiieeieenee. 122
Slika 43: Poenostavljen ER model prejetih raCunov............cocvveeiiieeiiiieciieeiee e 125
Slika 44: Poenostavljen razredni diagram prejetih raCunov.........cc.eeeeveeeeieeecieeeeiee e 126

Slika 45: Primer geNneraliZaCijcccueeruieriieiiieeiieeiieeiie et ettt ite et et e steeaeesbeeseesaaeenseesnseenseas 128
Slika 46: Primer uporabe vmesnika, asociacijskega razreda in opombecccceevveerienueeneeennen. 130
Slika 47: ODL vmesnik za delo z objektno podatkovno bazo..........ccceeeeveeeeiieeciieecieecieeeee e 132
Slika 48: Podatkovni model nepremicninske agencCijeoevuveerieeeiiieeiieeeeiee e 133
Slika 49: Kreiranje konceptualnega modela v orodju SAP Sybase PowerDesigner........................ 138
Slika 50: Paleta gradnikov za izdelavo konceptualnega modela v orodju PowerDesigner 138
Slika 51: Primer konceptualnega modela trgOVINEcceeeeiieeiieeeiiie e 139
Slika 52: Generiranje logicnega modela trgOVINE..........cccvieeriieeiiieeiiie e 140
Slika 53: Primer logi¢nega modela trgOVINE...........ccuieriieiienieeiieiie ettt 141
Slika 54: Kreiranje dodatnega indeksa............c.ooviiiiiiiiiiiiiieiiecicee e 142
Slika 55: Prikaz indeksov tabele STRANKA ... 143
Slika 56: Izdelava SQL skripte modela trgOVINeccccuieeviieeiieeeiiie e 143
Slika 57: Orodje Oracle SQL Developer Data Modelerccooviiviiiiniieniienieeieeieeeeee e 144
Slika 58: Primer logi¢nega modela knjiznice (IZPOSOJA kot moc¢ni entitetni tip)........ccceeeeneene 145
Slika 59: Primer logi¢nega modela knjiznice (IZPOSOJA kot Sibki entitetni tip)ccceeeeeveennnee. 146
Slika 60: Preslikava v relacijski MoOdel..........cccoiiiiiiiiiiiiiieeiiecee et 146
Slika 61: Primer relacijskega modela knjiznice (IZPOSOIJA kot Sibki entitetni tip)........ccccecuenneene 147
Slika 62: Kreiranje SQL SKITPL.......coiieiiieiiieiieiie ettt ettt ettt ettt e e eaae e b e snseeneeas 147
Slika 63: Izsek iz vsebine SQL skripte podatkovne baze knjiznice..........cccceeveevvvieecieencieeereeenee, 148
Slika 64: Orodje Oracle APEXooo ittt e tae e st eeaae e s v e e enaaeeenns 149
Slika 65: Delo Z SQL SKITPLO ..c.vviiiieiieeiieeie ettt ettt ettt e st e et e eaaeebeeenseeneeas 149
Slika 66: Prikaz rezultatov izvedbe skripte za generiranje PB knjiznice..........cccocceevieniieniennnnnnen. 150
Slika 67: Brskalnik objektov baze (Object BIOWSET).......ccuveeeiieeiiieeiiie et 151
Slika 68: UTejanje tabElecccuuieeiiieeiiieeiie ettt ee et e e ste e e e e e eaeeetaeeensaeeeaaeesssaeesnseeennnes 151
Slika 69: Okno za delo z SQL ukazi — primer poizvedbe in vstavljanja novega Clana 153
Slika 70: Izpis obvestila o napaki — krSitev referencne integriteteceoeeveervenerieneenensiennenn 153
Slika 71: Vnos nove vrste ¢lana v tabelo CLANARINA z uporabo SQL stavka INSERT 154
Slika 72: Dodajanje dijaka v tabelo CLANcoooiiiiiiiieie ettt 154
Slika 73: Poizvedba — zaposleni Clani............cceeriiiiiieiiiiiieniie ettt 155
Slika 74: Kreiranje tabele CLANoooiiiiieiee ettt st eaae b e esseennees 155
Slika 75: Dodajanje in povezovanje tabel (Relationships)ccccvveeeiieeeiieiiiieeieeeie e 156
Slika 76: Vnos podatkov v tabelo CLANccciiiiiiiieeeee ettt 156
Slika 77: Kreiranje QBE poizvedbe v orodju MS ACCESS ...cccuvvieriiieeiiieeiieeiee et 157
Slika 78: Primer QBE in SQL POIZVEADEcc.eovuiiiiiiiiieiieiiecieee e 157
Slika 79: Rezultat POIZVEADE........cc.eeiiieiieiieciiee ettt st ae e e enbeeneeas 158
Slika 80: Resitev - konceptualni model smucarskih SKOKOV.........cccovviieiiiieiiiiieiiieieeeeeee e 159
Slika 81: Resitev - konceptualni model prodajalne avtomobilovcceeeevieiiiiiniiiecieeeieeee, 159

KAZALO TABEL

Tabela 1:
Tabela 2:
Tabela 3:
Tabela 4:
Tabela 5:
Tabela 6:
Tabela 7:
Tabela 8:
Tabela 9:
Tabela 10

Tabela 11:
Tabela 12:
Tabela 13:
Tabela 14:
Tabela 15:
Tabela 16:
Tabela 17:
Tabela 18:

Nenormalizirana tabela PiCacccooviiiiiiiiiiiiiniiieceeee e 59
Azurirana tabela PICaoooiiiiiiiiii s 59
Podatki picerije iz tabele 1 v normalizirani bazi...........cccccecvveeviiieniieeiiie e 60
Dodajanje vrazje srednje pice v normalizirano bazoccceeeeeveiieiiieniiinienieeeeeeeenee. 61
AZurne anomalije pri brisanju podatkov tabele Picacccooieviniininiininiiiiniees 61
Brisanje male vrazje pice iz normalizirane baze...........cccoeeeveeevieeenieeeniee e 62
Azurne anomalije pri spreminjanju podatkov tabele Picac.ccccoveeeeiieiiiiicieeee 62
Spreminjanje opisa sestavine v normalizirani bazi..........ccoceecevieniniineininiieneeeeeee, 63
Zapisi v nenormaliZirani TEIACTIT ...eevuvervieriierieeiiieeii ettt ettt e eane e 66
: Prednosti in slabosti denormaliZacije..........cocueeeivieeiiieeiieeeiie et 74

UKAZi SQL DL ..ottt ettt sttt 84
Ukazi in operatorji SQL DMLoooiiiiiiiiiiciee ettt s 91
Prikaz podatkov v tabeli CLAN po izvedbi ukaza INSERT..........cccceoiiniiiiniiiiienne 92
Prikaz podatkov v tabeli CLAN po izvedbi ukaza UPDATE.........c.ccoovvieiiieeieeeeeee 93
Prikaz tabele CLAN po izvedbi ukaza DELETE..........cccccooiiiiiiiiiieeeeeeeeee e 94
Rezultat poizvedbe primera 6.3.2.4.1 ...c.oooieiiieiieiieeiece e 95
Rezultat poizvedbe primera 6.3.2.4.2occiviiioiieeiieieee et 95
Rezultat poizvedbe primera 6.3.2.4.3oooiiiiiieeieeeee et 96

Tabela 19: Rezultat poizvedbe primera 6.3.2.4.4 z duplikati in brez duplikatovcccceeevveennneen. 96
Tabela 20: Rezultat poizvedbe primera 6.3.2.4.0c.ocovieiiieiiieiieeieeeie et 97
Tabela 21: Rezultat poizvedbe primera 6.3.2.4.7 ...cccoieiiiiiieiieeieeieeeee ettt 97
Tabela 22: Rezultat poizvedbe primera 6.3.2.4.8oooiiiieiieeieeeee et 98
Tabela 23: Rezultat poizvedbe primera 6.3.2.4.9ccooioiiiiiieeeeeee e 98
Tabela 24: Rezultat poizvedbe primera 6.3.2.4.10cccieiiiiiiiniieieecee et 99
Tabela 25: Rezultat poizvedbe primera 6.3.2.4. 11coooiiiiiiiiiiiciee e 99
Tabela 26: Rezultat poizvedbe primera 6.3.2.4.12ccoooiiiieiiiecieecee et 100
Tabela 27: Rezultat poizvedbe primera 6.3.2.4.13 ..ot 100
Tabela 28: Rezultat poizvedbe primera 6.3.2.4.14cccieiiiiiieieeeeeee e e 100
Tabela 29: Rezultat poizvedbe primera 6.3.2.4.15ocooiiiiiiiieieceeee e 101
Tabela 30: Rezultat poizvedbe primera 6.3.2.4.16coooiieeiiiieiiecee et 101
Tabela 31: Prikaz vseh ¢lanov (levo) in rezultat poizvedbe (desno) primera 6.3.2.4.17.................. 102
Tabela 32: Rezultat poizvedbe primera 6.3.2.4.18ooooiiiiiiiieeecee e 102
Tabela 33: Rezultat poizvedbe primera 6.3.2.4.19cccioiiiiiiiieie et 102
Tabela 34: Vsebina tabele NepremiCningccccveeriieriieriienieeiieeieeieeereeieesae e sneeeeesaeensee e 103
Tabela 35: Vsebina tabele Lastnikcc.ooiiiiiiiiiiiiiiie e 103
Tabela 36: Rezultat poizvedbe primera 6.3.2.4.20coooviieiiieeiiieeiie ettt 103
Tabela 37: Rezultat poizvedbe primera 6.3.2.4.21cociiiiiiiiieiecie et 104
Tabela 38: Rezultat poizvedbe primera 6.3.2.4.22cccieviiiiiieieeieeieeeee et 105
Tabela 39: Rezultat poizvedbe primera 6.3.2.4.23oooiiiiieeceeeeee et 105
Tabela 40: Rezultat poizvedbe primera 6.3.2.4.24oooviieiiiieeeeeee et 106
Tabela 41: Rezultat poizvedbe primera 6.3.2.4.25ooooiiiiiiieieeeeee e 106
Tabela 42: Rezultat poizvedbe primera 6.3.2.4.26ccceevuiiriieiieeiieieeeieeee et 107
Tabela 43: Rezultat vgnezedene poizvedbe primera 6.3.2.4.27.......ccccuvveeiiieerieeeiieeeeiee e 108
Tabela 44: Rezultat vgnezedene poizvedbe primera 6.3.2.4.28........cccoeeviieeeiieeiieeeeiee e 108

Tabela 45:
Tabela 46:
Tabela 47:
Tabela 48:
Tabela 49:
Tabela 50:
Tabela 51:
Tabela 52:
Tabela 53:
Tabela 54:
Tabela 55:
Tabela 56:
Tabela 57:
Tabela 58:

Rezultat vgnezedene poizvedbe primera 6.3.2.4.29........ccoeviiriiiiiiinieeiieieee e 109
Vsebina tabele ZapOoSIeniccueeeiieiiieriiiiiieiie ettt 109
Rezultat poizvedbe primera 6.3.2.4.30ccoeeeiiieeiiieeie et 109
Rezultat poizvedbe primera 6.3.2.4.31ccoviiiiiieieeeeeeee et 110
Rezultat poizvedbe primera 6.4.1.1cooiiiiiiiiiiiieeee e 112
Rezultat poizvedbe 6.4.1.2....c..ooiuiiiiieiieieee ettt 112
Rezultat poizvedbe primera 6.4.1.4oooiiieiieeeeeeee et 113
Rezultat poizvedbe primera 6.4.2.1ccoiieiiiieiieeeeeeee et 113
Rezultat poizvedbe primera 6.4.2.2 (izraun vrednosti posamezne postavke)............. 114
Rezultat poizvedbe primera 6.4.2.2 (izra¢un skupnega zneska posameznega racuna). 115
Funkcionalnosti, ki jih mora podpirati vsak objektni SUPBc.cccovveiiiiiniiiinns 123
Tabela CLANARINA z vnesenimi podatKi.......cccccveeeiiiieriieeniieeiee e 152
Tabela CLAN z vnesenimi pOdatki..........ccoevuieriieiiieniieiieeieeitesee et 152

1 o1 T O N R 154

1 Uvod v podatkovne baze

Poslovni sistemi so dandanes bolj kot kdajkoli prej odvisni od zmoznosti pridobivanja natanc¢nih in
pravocasnih podatkov ter zmozZnosti njihovega ucinkovitega preoblikovanja v informacije, tako za
operativno izvajanje poslovnih procesov, kot tudi upravljanje in odloc¢anje. Kvalitetne in pravocasne
informacije za poslovni sistem lahko predstavljajo konkuren¢no prednost. Brez zmozZnosti za
upravljanje z velikimi koli¢inami podatkov in zmozZnostmi za hitro iskanje ustreznih podatkov ter
njihovo preoblikovanje v informacije za razlicne vrste uporabnikov, postanejo podatki breme za
organizacijo. Odgovor nam dajejo podatkovne baze oziroma sistemi za upravljanje s podatkovnimi
bazami kot ena od temeljnih vrst informacijske tehnologije in integralni del prakticno vsake
aplikacije ali informacijskega sistema.

1.1 Podatek in informacija

Izraza podatek in informacija se pogosto uporabljata kot sinonima, vendar pa je potrebno med njima
razlikovati. Poglejmo si najprej nekaj definicij podatkov (ANSI, ISO, Everest, povzeto po Mohoric,
1992, str. 2-3):

++ Definicija 1: Podatek je poljubna predstavitev s pomocjo simbolov ali analognih velicin, ki ji
je pripisan, ali seji lahko pripise pomen.

¢ Definicija 2: Podatek je predstavitev dejstva, koncepta ali instrukcije na formaliziran nacin,
ki je primeren za komunikacijo, interpretacijo ali obdelavo s strani ¢cloveka ali stroja.

¢ Definicija 3: Podatki so dejstva predstavljena z vrednostmi (Stevilke, znaki, simboli), ki imajo
pomen v doloCenem kontekstu.

Podatek je lahko diskreten, Ce se pri predstavitvi uporabljajo simboli (npr. stopinje cezija), ali pa
analogen, Ce se za predstavitev uporablja fizikalna veli¢ina (npr. dolZina Zivosrebrnega stolpca).

Druga definicija pravi, da mora biti predstavitev izvedena na formaliziran nacin, kar pomeni, da
mora obstajati nek predpis, po katerem simbole ali vrednosti zapisujemo ali beremo.

Vsem trem definicijam pa je skupno, da se podatku lahko pripiSe nek pomen na osnovi predpisa
oziroma znotraj nekega konteksta. Podatek je tako le nosilec informacije oziroma njegova fizicna
predstavitev.

Po ANSI in ISO velja:
++» Definicija 4: Informacija je pomen, ki ga ¢lovek pripise podatkom s pomocjo znanih konvencij,
ki so uporabljene pri njeni predstavitvi.

Everest je zapisal naslednjo definicijo:
+¢ Definicija 5: Informacija so ovrednoteni podatki v specificni situaciji.

12

Langefors je podal naslednjo definicijo informacije (Langefors 1980 v Mohori¢, 1992, str. 3):

¢ Definicija 6: Informacija je novo spoznanje, ki ga ¢lovek doda svojemu poznavanju sveta.
Odnos med podatki in informacijo podaja naslednja formula: I =i(D, S, t), kjer pomeni:

| — informacija, ki jo posredujejo podatki

i - Informacijska funkcija

D — podatki

S - sprejemna struktura — prejemnikovo znanje
t - Cas, ki je na voljo za interpretacijo podatkov.

Iz navedene definicije izhaja:

e Podatki niso informacije.

e Podatki ne vsebujejo informacije.

e Podatki posredujejo informacijo prejemniku, katerega sprejemna struktura je konsistentna z
izbrano predstavitvijo podatkov in modelom sveta, na katerega se nanasajo.

e Ce je koli¢ina podatkov tako velika, da se jih v ¢asu, ki je na voljo za ukrepanje, ne da
interpretirati, se lahko zgodi, da s podatki ni posredovana nobena informacija.

Gradisar in drugi (2012, str. 35) pa informacijo definirajo kot:
¢ Definicija 7: Informacija je tako zaporedje znakov v nekem jeziku, ki je sintakti¢no pravilno,
razumljivo in ima za prejemnika uporabno vrednost.

Informacijo navadno opredelimo s tremi dimenzijami (Gradisar in drugi, 2012, str. 36-38):
e vrednostjo,

e kolicino,

e kakovostjo.

Informacijsko vrednost lahko dolo¢imo kot vrednost spremembe v obnasSanju prejemnika,
zmanjsano za stroske pridobitve informacije. Prispevek doloCene informacije k boljSemu odlo¢anju
pa je véasih tezko ali nemogoce ugotoviti. Vrednost informacije se s ¢asom manj$a. Ce dobimo
informacijo dovolj zgodaj, da se lahko na njeni podlagi dobro odlo¢imo, je njena vrednost visoka. Ce
informacija pride prepozno, pa je njena vrednost lahko zelo nizka celo enaka 0. Uporabna vrednost
informacije z vidika odlocanja in upravljanja torej ni stalna, temvec se s casom manjsa. Vrednost
informacije je odvisna tudi od njene kakovosti (Gradisar in drugi, 2012, str. 38).

Informacija je merljiva koli¢ina in jo na podlagi dogovora v teoriji informacij merimo oz. izmerimo z
osnovno enoto BIT (B/nary digiT). Informacija odstrani dolo¢eno stopnjo neznanja. Koli¢ina
informacije, ki jo dobimo, je tem vecja, ¢im veC novega nam pove. Sporocilo z vecjo koli¢ino
informacije nas bolj preseneti. Koli¢ina informacije je vecja, ¢e izvemo, da se je zgodil malo verjeten
dogodek in manjsa,ce smo dogodek pricakovali (Gradisar, 2012, str. 37).

13

Slika 1: Informacijska vrednost s ¢asom pada

Informacijska

vrednost
N

MAX|—

\
MIN I —

t0 t1

Vir: Gradisar in Resinovic¢, 1998, str. 51.
Formula za izrac¢un koli¢ine informacije (Shannon):

| = -logap(x) [bit] p(x)— verjetnost nastopa dogodka x

Ce poi$¢emo vzporednice med Shannonovo in Langeforsovo definicijo informacije, potem so podatki
v slednjem primeru sporocilo, da se je pripetil dogodek x, sprejemna struktura pa je poznavanje
verjetnosti nastopa posameznih dogodkov p(xi). Informacija, ki jo izraCunamo po Shannonovi
formuli, se ujema s trditvijo iz Langeforsove definicije, da je informacija le novo spoznanje. Ce se
namrec pripeti zelo verjeten dogodek (p(x)=1), potem je to enako sprejetim podatkom, ki nam
sporocajo nekaj, kar smo Ze vedeli (I=0), in nimamo torej niesar dodati svojemu prejSnjemu znanju
(povzeto po Mohoric, 2002, str. 2-3).

Ce ima sistem n enako verjetnih stanj pa lahko uporabimo naslednjo formulo (Gradiar in Resinovi¢,
1998, str. 40):

| = logzn

Primer 1.1.1: Kovanec se z enako verjetnostjo nahaja v dveh razli¢nih polozajih (cifra, grb). Koli¢ina
informacije, ki je potrebna,da dolo¢imo stanje kovanca je:

| =-logz % =1 bit

Primer 1.1.2: Imejmo predalcnik s kroglico z osmimi predali. Kroglica je lahko v kateremkoli predalu
z enako verjetnostjo. Koliko informacije dobimo, ko izvemo, da je kroglica v tretjem predalu?

| = -log, 8 =3 bite

14

Za uspesno upravljanje in odlo¢anje na podlagi informacij je zelo pomembna njihova kakovost.
Kakovost informacije se kaze v tem, kako spodbuja prejemnika k dejanjem oziroma boljsim
odlocitvam. Sodila merjenja kakovosti informacije so (Gradisar in Resinovic, str. 48-51):

* Dostopnost: do informacije je potreben dovolj hiter dostop, saj se s ¢asom njena vrednost
zmanjSuje. Dostopnost merimo od casa, ko uporabnik informacijo zahteva, do trenutka, ko jo
dobi. Cas je odvisen od metod in sredstev za iskanje informacije.

* Tocnost: na osnovi netocnih informacij uporabnik sprejema napacne sklepe in odloitve. V
informacijski proces je potrebno vgraditi kontrole, ki omogocajo odkrivanje in popravljanje
napak in tako zmanjsujejo koli¢ino neto¢nih informacij.

* Pravocasnost: za sprejemanje odlocCitev je pomembna pravocasna informacija, vendar se
pravocasnost in to¢nost pogosto izkljuCujeta. Kontrolni mehanizmi pogosto podaljSujejo cas
ustvarjanja informacije. Sistemi morajo biti ¢im bolj odzivni, da je sprememba stanja in
obnasanja v organizaciji in okolju ¢im prej na voljo uporabniku v obliki informacije.

* Popolnost: popolna informacija je tista, ki daje uporabniku vse potrebno za sprejemanje
ustreznih odlocitev in akcij. Absolutno popolne informacije ni!

* Zgoscenost: prevelika popolnost lahko za uporabnika po drugi strani pomeni preveliko
zasi¢enost, zato ne bo mogel pregledati in uporabiti vseh informacij. Informacija mora biti za
doloc¢en namen ravno prav zgoscena — kratka in jedrnata.

* Ustreznost: ugotavljamo do kakSne mere je informacija prilagojena informacijskim potrebam
uporabnika. Informacijske potrebe razlicnih uporabnikov so razlicne, tudi pri istem uporabniku
pa se s Casom spreminjajo.

* Razumljivost: posredovanje v ustrezni obliki in jeziku, da jo uporabnik lahko razume in uporabi.

* Objektivnost: predstavitev pojava mora biti stvarna in nepristranska.

15

1.2 Podatkovna baza

Podatkovna baza je organizirana zbirka podatkov in je danes integralni del vsake poslovne aplikacije
ali informacijskega sistema. Lahko jo razumemo kot veliko shrambo najrazli¢nejsih podatkov, ki jo
hkrati uporabljajo Stevilni oddelki in uporabniki. Namesto neurejene mnozice datotek so v primeru
uporabe podatkovne baze vsi podatki shranjeni na enem mestu, njihovo podvajanje pa je zmanjSano
na minimum. Podatkovna baza navadno ni last enega oddelka, ampak gre za pomemben
organizacijski vir. Podatkovna baza polega samih podatkov vsebuje tudi njihove opise. Opise
imenujemo sistemski katalog (ang. system catalog), podatkovni slovar (ang. data dictionary) ali
metapodatki (podatki o podatkih) (Connolly in Begg, 2010, str. 15).

Podajmo nekaj definicij:

« Definicija 8: Podatkovna baza je model okolja, ki sluzi kot osnova za sprejemanje odlocitev
in izvajanje akcij (Mohoric, 1992, str. 10).

« Definicija 9: Podatkovna baza je mehanizirana, vecuporabniska, formalno definirana in
centralno nadzorovana zbirka podatkov (Mohori¢, 1992, str. 12).

%+ Definicija 10: Podatkovna baza je deljena zbirka logi¢no povezanih podatkov in njihovih
opisov, nacrtovanih za zadovoljitev informacijskih potreb poslovnega sistema (Connolly in
Begg, 2010, str. 15).

« Definicija 11: Podatkovna baza je zbirka med seboj pomensko povezanih podatkov, ki so
shranjeni v racunalniskem sistemu, dostop do njih je centraliziran in omogocen s pomocjo
sistema za upravljanje s podatkovno bazo — SUPB (Mohoric, 1992, str. 12).

Podatkovna baza je nacrtovana in zgrajena z nekim namenom in skladno s tem odraza dolocen vidik
realnega sveta oziroma hrani le tiste podatke, ki so za dolo¢eno domeno pomembni. V podatkovnih
bazah hranimo podatke o entitetah, ki so lahko osebe, dogodki, predmeti, pa tudi njihove
medsebojne povezave. V primeru Sole je npr. entiteta vsak Student, ki to Solo obiskuje, in prav tako
vsak predmet, ki se na Soli poucuje. O entitetah nas zanimajo doloCene lastnosti, ki jih imenujemo
atributi. V primeru Studenta so te lastnosti navadno: vpisna Stevilka, ime, priimek, datum rojstva,
naslov, itd., v primeru premeta pa: Stevilka predmeta, letnik, semester, Stevilo kreditnih tock,
obveznosti. Poleg tega nas zanimajo tudi povezave med entitetami. Tako ni dovolj, da imamo le
seznam vseh Studentov in vseh predmetov, ampak moramo vedeti tudi, katere predmete poslusa
vsak posamezni Student, ali kateri vsi Studenti so vpisani na dolo¢en predmet. Za podatkovno bazo
je tako znacilno, da so podatki o entitetah in povezavah v njej strukturirani.

16

Podatkovna baza je tako zelo pomembno sredstvo za delovanje poslovnega sistema in njegovega
informacijskega sistema, zato jo je potrebno ucinkovito upravljati. Upravljanje podatkovne baze
zajema (Mohori¢, 1992, str. 11):
P zagotavljanje razpolozljivosti podatkov in
» nadzor nad uporabo podatkov. Sem sodi skrb za:

o celovitost (integriteto) podatkov,

o uporabo podatkov v skladu z njihovim namenom in ustrezna zaupnost,

o uporabnost podatkov tudi v prihodnje.

Razpolozljivost (ang. availability) pomeni ucinkovit, socasen dostop vseh uporabnikov do razlicnih
podatkov, kadarkoli jih pri svojem delu potrebujejo. Med uporabnike podatkovne baze poleg
koncnih uporabnikov Stejemo tudi razvijalce aplikacij, skrbnika podatkovne baze (ang. Database
administrator) ter uporabniske programe.

Celovitost ali integriteta (ang. integrity) podatkov pomeni, da so podatki konsistentni navznoter
in z zunanjim svetom. Sirse lahko pri integriteti govorimo tudi o kvaliteti podatkov (ang. data
quality) vsebovanih v podatkovni bazi. Kvalitetni podatki so pravocasni, popolni in izvirajo iz
zanesljivih virov. Mehanizmi za zagotavljanje celovitosti podatkov so: preverjanje vhodnih podatkov,
obnavljanje PB in nadzor nad so¢asnim dostopom.

Za uporabo podatkov v skladu z njihovim namenom morajo vsi uporabniki pravilno razumeti
podatke, ki so v PB zapisani, kar zagotovimo z opisi njihovega pomena. Mehanizmi za upravljanje
dostopa (ang. access control) uporabnikom omogocajo le dostop do podatkov, ki jih glede na svojo
vlogo v poslovnem sistemu potrebujejo za opravljanje svojega dela. S tem je zagotovljena ustrezna
zaupnost podatkov, glede na vrsto podatkov. Pri tem mehanizmi omogocajo tudi dolocitev vrste
dostopa kot so branje, dodajanje, spreminjanje, brisanje, spreminjanje strukture PB. Upravljanje z
dostopnimi pravicami je ena od kljuénih nalog skrbnika PB.

Da bodo podatki uporabni tudi v prihodnje, moramo skrbeti za prilagajanje strukture podatkovne
baze spreminjajo¢im se poslovnih zahtevam ter posodabljati informacijsko infrastrukturo za
hranjenje podatkov (strojno opremo, sistem za upravljanje s podatkovno bazo) (povzeto po
Mohori¢, 1992, str. 12-14).

1.3 Tri-nivojska predstavitev podatkov v podatkovni bazi

Zelo pomembna lastnost SUPB je, da omogoca podatkovno neodvisnost - programi so neodvisni od
fizicnega nacina shranjevanja in strukturiranja podatkov v PB. Da bi dosegli podatkovno neodvisnost
podatke v PB opisemo na treh ravneh (Mohori¢, 1992, str. 17-20, Connolly in Begg, 2010, str. 36-41,
Ramakrishnan in Gehrke, 2003, str. 12-16):

» zzunanjo shemo,

» s konceptualno ali logi¢no shemo in

» sfizicno (notranjo) shemo.

Metapodatkovna baza torej vsebuje tri vrste opisov fizicnih podatkov kot prikazuje slika (Slika 2).

17

Slika 2: Tri-nivojska predstavitev podatkov v podatkovni bazi

Zunanja
shema 1

Zunanja
shema 2

Zunanja
shema 3

\l/

Konceptualna
shema

A

Metapodatki

A
Fizicna
— shema

Fiziéni P>
podatki DISK

Konceptualna ali logi¢na shema opisuje podatke z vidika podatkovnega modela, ki ga PB uporablja.
Npr. podatki o entitetnih tipih (profesor, Student, predmet, predavalnica,...), podatki o povezavah
(predava, poslusa,...). Proces izdelave konceptualne sheme se imenuje konceptualno ter logi¢no
nacrtovanje. Konceptualno nacrtovanje je podrobno predstavljeno v poglavju 4, logi¢no nacrtovanje
relacijske PB pa v poglavju 5.2.

Fizicna shema podaja podrobnosti o shranjevanju podatkov. Predstavi, kako so podatki iz
konceptualne sheme dejansko shranjeni na sekundarnem pomnilniku, npr. trdem disku ali
magnetnem traku. Proces izdelave fizicne sheme se imenuje nacrtovanje fizicne PB. V tem koraku
se je potrebno doloditi, kakSno datotecno organizacijo bomo uporabili za shranjevanje podatkov in
kreirati indeksne datoteke. Nacrtovanje fizicne relacijske podatkovne baze je predstavljeno v
poglavju 5.4.

Tudi zunanje sheme uporabljajo koncepte podatkovnega modela (gradnike konceptualne sheme).
Zunanja shema se uporablja za dostop do podatkov, ki je prilagojen dolo¢enemu uporabniku ali
skupini uporabnikov. Vsaka zunanja shema se sestoji iz enega ali ve¢ pogledov (ang. view) na
konceptualno shemo. Pogled je logi¢na tabela, ki ne obstaja v fizicni podatkovni bazi.

Opisano tri-nivojsko predstavitev podatkov uporabljamo za doseganje podatkovne neodvisnosti.
Poznamo dve vrsti podatkovne neodvisnosti (Mohori¢, 1992, str. 20):

» Fizicno podatkovno neodvisnost in
» Logicno podatkovno neodvisnost.

Konceptualna shema zagotavlja fizicno podatkovno neodvisnost (Slika 2), saj skrije podrobnosti o
tem, kako so podatki dejansko shranjeni na disku, o strukturi datotek in o indeksih. Dokler ostaja
konceptualna shema nespremenjena, spremembe na fizicnem nivoju ne vplivajo na programe, ki
podatke uporabljajo. Lahko pa spremembe vplivajo na ucinkovitost.

18

Slika 3: Podatkovna neodvisnost

Zunanja Zunanja Zunanja
shema 1 shema 2 shema 3

\ /ogiéna podatkovna neodvisnost

Konceptualna
shema

Fizicna podatkovna neodvisnost

Fizicna
shema

Zunanje sheme pa zagotavljajo logi¢no podatkovno neodvisnost. Dodatne logi¢ne povezave med
podatki, razsiritve/izloCitev entitetnih tipov in atributov v konceptualni shemi ne vplivajo na
uporabnike, ki jih te spremembe ne zadevajo.

1.4 Mesto podatkovne baze v poslovnem sistemu

Podatkovne baze se v poslovnih sistemih uporabljajo predvsem z dvema namenoma: za hranjenje
transakcijskih podatkov, ki se uporabljajo pri izvajanju razlicnih poslovnih procesov in za upravljanje
poslovnega sistema.

Hranjenje in uporaba transakcijskih podatkov, ki se zajemajo in obdelujejo pri operativhem
izvajanju poslovnih procesov, npr. prodaja ali nabava izdelkov/storitev. V tem primeru gre za
podroben zapis vseh podatkov, ki so potrebni za izvedbo celotnega poslovnega procesa (npr. v
primeru prodaje podatkov o kupcu, kraju in nacinu dostave, ceni, koli¢ini itd.). Tovrstne podatkovne
baze so lahko del funkcionalnih aplikacij ali celovitih informacijskih resitev, prav tako so lahko tudi
del razli¢nih spletnih aplikacij.

Uporaba podatkov za upravljanje poslovnega sistema: pokrivanje informacijskih potreb vodstvenih
delavcev na takticni in strateski ravni organizacije. Pogosto se tukaj kazejo potrebe po agregiranih
podatkih, npr. prodaja po izdelkih, mesecih, regijah. Uporabo podatkov za upravljanje in odloc¢anje
delimo na standardna porocila in ad hoc poizvedbe, za katere se uporabljajo specializirana orodja.
Pri pripravi porocil ali ad hoc poizvedovanju lahko dostopamo do transakcijskih podatkovnih baz,
lahko pa podjetje uvede specializirano podatkovno bazo, imenovano podatkovno skladisce, kamor
s posebnimi transformacijski postopki prepiSe transakcijske podatke. Del podatkovnega skladis¢a
pogosto predstavljajo tudi podatki iz okolja poslovnega sistema, kar pomeni, da v njem integriramo
zunanje in notranje podatke, kar je za upravljanje in odlo¢anje zelo pomembno.

19

Vprasanja za ponavljanje

Kaj je podatek?
Kaj je informacija?
V kaksnem medsebojnem odnosu sta po Lengeforsovi definiciji podatek in informacija?
S katerimi dimenzijami opredelimo informacijo?
Podajte Shannonovo formulo za izracun kolicine informacije.
Zakaj so za poslovni sistem pomembne kakovostne informacije?
Katera sodila kakovosti informacije poznate?
Kaj je podatkovna baza?
Kaj vsebuje podatkovna baza?
. Kaj je katalog oz. podatkovni slovar?

L oo NDU A WNBRE

=
= O

. Kaj zajema upravljanje podatkovne baze?

[E
N

. Kaj je razpoloiljivost podatkov?

[E
w

. Kaj je celovitost podatkov?

. Zakaj je pomembno upravljanje dostopa do podatkov in kaj omogoca?

. Kdo so klju¢ni uporabniki podatkovne baze?

. Katere vrste shem obsega tri-nivojska predstavitev podatkov? Zakaj je pomembna?
. Kaj je podatkovna neodvisnost?

I T
00N O U

. Kateri vrsti podatkovne neodvisnosti poznate? Kaj je njun namen?

[E
Yol

. Zakaj je podatkovna baza pomemben vir poslovnega sistema?
. Za katere namene in v kaksnih vrstah aplikacij oz. informacijskih resitev se uporablja podatkovna
baza?

N
o

20

2 Sistem za upravljanje s podatkovno bazo

Sistem za upravljanje s podatkovno bazo — SUPB (ang. Database Management System) je
programska oprema za obvladovanje velikih koli¢in podatkov. Danes na tem podrocju prevladujejo
predvsem relacijski SUPB najbolj znanih podjetij s podrocja IT, to so: Oracle, IBM (DB2) in Microsoft
(MS SQL). Vsako od njih ponuja svoj SUPB, uveljavili pa so se tudi nekateri odprtokodni SUPB, najbolj
popularen med njimi je MySQL.

¢ Definicija 12: Sistem za upravljanje s podatkovno bazo (SUPB) je skupek programske opreme,
ki omogoca definiranje, kreiranje, vzdrZevanje in nadzor nad dostopom do podatkov v
podatkovni bazi (Connolly in Begg, 2010, str. 16).

Gre za programsko opremo, ki predstavlja vmesni ¢len med uporabnisko aplikacijo in podatkovno
bazo. Navadno le skrbnik podatkovne baze neposredno dostopa do SUPB (Slika 4).

Slika 4: SUPB
Aplikacije > SUPB 4—
: Skrbnik PB
Uporabniki l
Podatkovna
baza

2.1 Prednosti uporabe SUPB

Shranjevanje podatkov v datoteke direktno na disk ima Stevilne slabosti, ki jih reSuje uporaba SUPB
kot vmesnega ¢lena. Ko so aplikacije Se dostopale direktno do podatkov na disku, je bilo potrebnega
veliko dodatnega programiranja (navadno v jezikih 3. generacije kot je bil na primer Cobol), saj je
vsaka aplikacija morala vsebovati tudi funkcije, ki jih danes opravlja SUPB. Vzdrzevanje taksnih
aplikacij je bilo zahtevno, vsebovale so veliko vrstic kode, spreminjanje podatkov struktur je bilo
zahtevno in zamudno, pogosto aplikacije niso imele implementiranih ustreznih varnostnih funkcij.
TeZava je bila tudi podatkovna odvisnost (tesna povezanost podatkov in aplikacije) in zato slaba
prenosljivost med razli¢nimi sistemi.

V primeru uporabe vmesnega Clena, programske opreme, imenovane SUPB, le-ta implementira
Stevilne pomembne funkcije, ki so jih prej morali programerji implementirati v vsaki aplikaciji
posebej. S tem se bistveno zmanjsa koli¢ina kode, potrebna za delo s podatki, zelo pa se poveca
tudi kakovost in hitrost dela s podatki. Zagotovljena je podatkovna neodvisnost, ki ima Stevilne
prednosti. Zelo pomembni za to podrocdje so seveda razlicni standardi, ki definirajo enoten nacin

21

upravljanja podatkov, ki omogoca uporabo istih oz. zelo podobnih ukazov ne glede na konkretni
SUPB.

Najpomembnejsi standard na tem podrocju je zagotovo SQL (Structured Query Language), ki
predstavlja standard za upravljanje s podatki v relacijskih SUPB. SQL je postal standard organizacije
ANSI (American National Standards Institute) v letu 1986 in organizacije ISO (International
Organization for Standardization) leta 1987. Kasneje je bil standard veckrat dopolnjen (zadnja verzija
ISO/IEC 9075). Kljub obstoju standarda na tem podrocju pa SQL koda ve¢inoma brez popravkov ni
prenosljiva med razli¢nimi SUPB-ji, lahko bi rekli, da le-ti govorijo razlicna narecja tega jezika.

2.2 Funkcije SUPB

Ze sam Codd je leta 1982 opredelil osem funkcij in storitev, ki jih mora nuditi vsak SUPB. V
nadaljevanju jih podajamo deset (povzeto po Connolly in Begg, 2010, str. 49-54, Mohori¢, 1992, str.
22-29).

SUPB po eni strani omogoca dostop do podatkov, po drugi strani pa izvaja zascito in nadzor do
uporabe podatkov. Tako se v grobem njegove funkcije dele na dostopne in kontrolne. Med
dostopne funkcije Stejemo tiste, ki so namenjene sploSnim uporabnikom (npr. vnos podatkov,
azuriranje podatkov, poizvedbe) in omogocajo uporabo podatkovne baze ter tiste, ki skrbniku PB
omogocajo izgradnjo PB (npr. definiranje shem, kreiranje PB). Prva skupina kontrolnih funkcij,
imenovana zascitne funkcije, je prikrita uporabnikom in se samodejno aktivira ob uporabi dostopnih
funkcij (npr. preverjanje vrednosti vhodnih podatkov, preverjanje dostopnih pravic, zagotavljanje
celovitosti pri soCasni uporabi PB s strani vec¢ uporabnikov). Druga skupina, imenovana nadzorne
funkcije, pa omogoca skrbniku PB zbiranje podatkov o uporabi PB in aktivhostih SUPB. Ti podatki
nadalje skrbniku omogocajo reorganizacijo (optimizacijo) fizicne podatkovne baze pa tudi
odkrivanje zlorab pri uporabi PB.

Klju¢ne funkcije tipiénega SUPB tako so (Connolly in Begg, 2010, str. 16):
» Upravljanje s podatki (SQL):
o Kreiranje podatkovnih struktur (ang. Create) je omogoceno z jezikom
DDL - Data Definition Language.
o VzdrZzevanje podatkov (ang. Insert, Update, Delete) izvajamo z uporabo jezika DML -
Data Manipulation Language.
° lzvajanje povprasevanja: povprasevalni jeziki (ang. Query Language).
» Mehanizmi nadzora nad dostopom do podatkov zagotavljajo:
o dostop do podatkov v skladu z avtorizacijo,
o skladnost podatkov,
o socashi dostop do podatkov z uporabo mehanizmov zaklepanja ter
o obnovo podatkov po transakcijskih in sistemskih nesrecah (razveljavljanje transakcij,
ponavljanje transakcij...).

22

2.2.1 Shranjevanje, pridobivanje in spreminjanje podatkov

SUPB mora omogocati shranjevanje, pridobivanje in posodabljanje baze podatkov. Gre za temeljno
funkcijo vsakega SUPB. Pri tem je pomembno, da SUPB pred uporabniki skrije interno fizicno
implementacijo PB (kot je organizacija datotek) in zagotovi visje nivojske mehanizme (npr. jezika
SQL in QBE), ki omogocajo shranjevanje, pridobivanje in posodabljanje podatkov na uporabnisko
prijazen nacin.

2.2.2 Dostopnost kataloga PB

Sistemski katalog (ang. system catalog) je po arhitekturi temeljna komponenta SUPB. Sistemski
katalog, imenovan tudi podatkovni slovar (ang. data dictionary) ali metapodatki (podatki o podatkih)
opisuje podatke, vsebovane v podatkovni bazi. Koli¢ina informacij in nacin njihove uporabe se med
SUPB-ji razlikujejo, a tipi¢no sistemski katalog vsebuje:

e Imena, tipe in velikosti podatkovnih elementov,

e Imena povezav,

e Integritetne omejitve in

e Imena uporabnikov z njihovimi dostopnimi pravicami,

e Zunanje, konceptualne in notranje sheme s preslikavami med njimi

e Statistike uporabe PB (npr. frekvence transakcij).

2.2.3 Podpora transakcijam

SUPB mora vsebovati mehanizem, ki zagotavlja, da se pri azuriranju vedno v celoti izvedejo vsa
azuriranja, ki jih obsega dolocena transakcija ali pa nobeno izmed njih, saj bi v nasprotnem primeru
PB postala nekonsistentna.

¢ Definicija 13: Transakcija je sklop akcij, izvajan s strani uporabnika ali aplikacije, ki dostopa
ali spreminja vsebino podatkovne baze, ki mora biti izveden v celoti, ali pa ne sme biti izveden
noben del (Connolly in Begg, 2010, str. 51).

< Definicija 14: Transakcija je zaporedje aZuriranj, ki povzroc¢e prehod podatkovne baze iz
enega veljavnega stanja v novo veljavno stanje, torej ohranja konsistentnost podatkovne
baze (Mohoric, 1992, str. 183).

V primeru, da pride med izvajanjem transakcije, ki vsebuje veC azuriranj, do napake na
raCunalniskem sistemu, mora SUPB izvesti razveljavitev Ze izvedenih azuriranj, da zagotovi ponovno
konsistentno stanje PB.

Primeri enostavnih transakcij so na primer dodajanje novega Studenta, predmeta ali ucitelja v
podatkovno bazo Studentskega informacijskega sistema. Tudi brisanja Studentov, predmetov ali
uciteljev so primeri transakcij.

Kompleksnejsa transakcija pa bi bila na primer prenos nosilstva predmetov iz ve¢ predhodnih
uciteljev na novega ucitelja, ki se zaposli na Soli. Ker je tukaj potrebno azurirati podatke na vec
mestih v podatkovni bazi, se lahko zgodi, da pride do za¢asne odpovedi sistema med izvajanjem te
transakcije, kar bi pomenilo, da so dolo¢eni predmeti bili prepisani na novega nosilca, doloceni pa

23

so ostali pisani na stare nosilce. V tem primeru je potrebno transakcijo najprej razveljaviti, da PB
zavzame staro konsistentno stanje (pred zacetkom izvajanja te transakcije) ter nato celotno
transakcijo ponoviti.

Transakcija v svojem Zivljenjskem ciklu prehaja med stanji: aktivna, uspesna, ponesrecena, uspesno
zakljuCena, neuspesno zaklju¢ena. V primeru ponesrecene transakcije, npr. podatkovne nesrece,
mora SUPB poskrbeti za razveljavitev vseh njenih aZzuriranj v PB, nato postane neuspesno zakljucena.
TaksSne transakcije, ki se niso uspesno zakljucile zaradi napake na sistemu, SUPB potem vrne v
ponovno izvajanje.

Transakcija se zacne z operacijo Zacetek transakcije, zakljuci pa z ukazom Pomni (ang. Commit) ali
Pozabi (ang. Cancel, Rollback). Ukaz Pomni je sporocilo SUPB, da so se vsa aZuriranja v okviru
transakcije uspesno koncala in se naj zato vse spremembe v PB ohranijo. Ukaz Pozabi pa je navodilo,
naj se vsa azuriranja v okviru te transakcije razveljavijo. SUPB implementirajo razlicne nacine za
razveljavitev transakcij in njihovo ponovno izvajanje (npr. obnavljanje s sen¢nimi stranmi, z
dnevnikom in kopijo).

2.2.4 Socasni dostop do podatkovne baze

SUPB mora vsebovati mehanizem za socasni dostop (ang. concurrency control), ki zagotavlja, da so
v primeru aZzuriranj podatkovne baze s strani ve¢ uporabnikov, le ta izvedena pravilno.

SUPB mora zagotavljati soCasni dostop do podatkovne baze velikemu Stevilu uporabnikov. V
primeru, da uporabniki podatke le berejo, je to enostavno. TeZava nastane, ko ve¢ uporabnikov
dostopa do podatkov in vsaj eden od njih podatke tudi azurira. Takrat hitro lahko nastopijo
nekonsistentnosti v podatkovni bazi.

Navedeni razli¢ni nacini zaseganja vplivajo na:

e obseg soCasnosti pri izvajanju transakcij,

e obseg podatkov o odobrenih in zahtevanih zasezZenijih,

e stopnjo dodatne obremenitve SUPB z izvajanjem nadzora nad zasezeniji.

Slika 5: Zaporedje izvajanja transakcij T1 in T2

Time T, Ty bal,
5] read(baly) 100
ty read(bal,) bal, = bal, + 100 100
t; bal, = bal,— 10 write(bal,) 200
t, write{bal,} 90
t 90

Vir: Connolly in Begg, 2010, str. 52.
Poglejmo primer izvajanja dveh transakcij T1 in T2 s slike (Slika 5). Transakcija T1 dvigne z racuna 10

€, T2 pa nanj poloZi 100 €. Stanje na racunu je pred zac¢etkom izvajanja T1 in T2 enako 100 €. Ce bi
se transakciji izvedli zaporedoma (brez ¢asovnega prekrivanja), bi kon¢no stanje bilo 190 €.

24

Vendar pa se transakciji v nasem primeru zacneta izvajata skoraj hkrati, obe tako prebereta zacetno
stanje 100 €. T2 nato prva spremeni stanje racuna s pologom 100 € na 200 €. Stanje shrani in s tem
azurira podatkovno bazo. Medtem, T1 zmanjsa svojo kopijo stanja racuna z dvigom 10 € (stanje te
kopije je zdaj 90 €). Stanje 90 € T1 nato zapiSe v podatkovno bazo in s tem prepise stanje, ki ga je
vzpostavila T2 pred njo. S tem se polog 100 € s strani T2 izgubi.

Da ne bi prihajalo do takSnih nepravilnosti SUPB-ji implementirajo razlicne mehanizme socasnega
dostopa do podatkovne baze, od zaseganja zapisov podatkovne baze (ang. locking) do casovnega
oznacevanja (ang. timestamping).

Zaseganje zapisov se lahko izvaja na razli¢nih nivojih podatkovne baze in sicer:
e Na logi¢nem nivoju lahko zasegamo

o relacije

o n-terice v relacijah,...
e Na fizi€nem nivoju lahko zasegamo:

o celotno fizicno podatkovno bazo,

o tabele,

o fiziéne bloke oz. strani,

o fizi¢ne zapise v tabeli.

Naloga nadzora nad so¢asno uporabo PB je:
e ohraniti podatkovno bazo v konsistentnem stanju ter hkrati
e dopustiti ¢im vecjo soCasnost izvajanja transakcij.

2.2.5 Obnavljanje podatkovne baze po nesrecah

SUPB mora vsebovati mehanizme, ki zagotavljajo obnovo podatkovne baze v primeru kakrsnih koli
podatkovnih nesrec. NesreCe se med seboj razlikujejo po vzrokih in posledicah, od vrste nesrece pa
so odvisni postopki obnavljanja. Lo¢imo naslednje vrste podatkovnih nesre¢ (Mohori¢, 1992, str.
182-200):

e transakcijske nesrece, ki jih odkrijejo uporabniski programi,

e transakcijske nesrece, ki jih odkrijeta SUPB ali operacijski sistem,

e sistemske nesrece,

e diskovne nesrece.

Transakcijske nesrece pogosto nastanejo zaradi napacnih vhodnih podatkov. Podatki lahko krsijo
pravila (ki jih imenujemo omejitve), ki povedo kaksen tip, dolZino in obliko podatkov lahko vnesemo
v posamezno polje podatkovne baze. Ce imamo na primer polje EMSO, pravilo lahko pravi, da je
vanj mozZno vnesti le Stevilke, in da je dolZina to¢no 13. V nasprotnem primeru gre za podatek, ki ga
ne bo mozno vnesti. Vhodni podatki so lahko tudi v protislovju z obstoje¢imi podatki v bazi. V obeh
primerih transakcije ni mogoce uspesno izvesti.

Pri izvajanju transakcije lahko pride tudi do prekinitve izvajanja programa (npr. deljenje z 0).
Tovrstne napake detektira operacijski sistem in jih sporoCi SUPB, ki do sedaj izveden aZuriranja v
okviru transakcije razveljavi.

25

Za sistemsko nesreco Stejemo izgubo podatkov v notranjem pomnilniku, zaradi prekinitve delovanja
le-tega. Napaka je lahko povzrocena s prekinitvijo napajanja ali napako pri branju ukaza ali podatka
iz notranjega pomnilnika. Sistemska nesreCa povzroCi prekinitev izvajanja trenutno aktivnih
transakcij. Pred nadaljnjo uporabo PB po sistemski nesreci, je potrebno obnoviti PB v zadnje veljavno
stanje pred nesreco in ponoviti izvajanje prekinjenih transakcij.

Diskovne nesrece pomenijo izgubo podatkov, shranjenih na disku. Razlog je lahko okvara diskovne
povrsine, okvara bralno pisalnih glav, okvara krmilnika diska itd. Tudi pri teh nesrecah so lahko
nekatere transakcije med svojim izvajanjem prekinjene. Ko PB spet zacne delovati, je potrebno
obnoviti PB v zadnje veljavno stanje pred nesreco in ponoviti izvajanje prekinjenih transakcij.

Da bi zagotovili moZznost obnove PB po vseh navedenih vrstah nesre¢, moramo implementirati
razlicne vrste podvajanja shranjenih podatkov ter podvajanja komponent racunalniskega sistema.
Tako na primer lahko podvojimo podatkovno bazo in sicer na razli¢nih nivojih: diskovni krmilnik
zapisuje so¢asno podatke na dva fiziéno lo¢ena diska. Ce se ena PB pokvari, se uporablja njena
dvojnica. Za vecjo zanesljivost se lahko podvoji tudi diskovni krmilnik ali Se druge komponente
raCunalniskega sistema. Navedena resitev omogoca hitro obnavljanje PB predvsem po diskovnih in
delno sistemskih podatkovnih nesrecah, vendar je relativno draga. Delna ali inkrementalna kopija
se lahko izvaja tudi v ¢asu, ko je PB v uporabi.

Zanesljivost delovanja se poveca tudi z RAID redundanco diskov (ang. redundant array of
independent disks), ki povecuje zanesljivost diska in s tem omogoca vecjo varnost shranjenih
podatkov. Poznamo razlicne vrste RAID redundance (RAID 0, RAID 1...). Kot zanesljivo varovanje pred
diskovnimi nesrecami se navadno uporablja periodicno kopiranje PB na magnetni trak.

Pri transakcijskih nesrecah, ko je potrebno razveljaviti Ze izvedena aZuriranja, pride v posStev
obnavljanje s sen¢nimi stranmi. Gre za zapisovanje azuriranj na proste bloke na disku in ne direktno
v podatkovno bazo. V primeru uspesno zakljucene transakcije, se ti bloki vkljucijo v PB namesto
starih - neazZuriranih.

Obnavljanje z dnevnikom in kopijo temelji na obcasni izdelavi kopije PB in izdelavi dnevnika. S
kopijo PB lahko obnovimo bazo v veljavno stanje pred diskovno nesreco. V dnevnik se zapisujejo
podatki, s katerimi je moZno s kopijo obnovljeno PB obnoviti v zadnje veljavno stanje tik pred
nesreco (vsebuje tudi podatke, s katerimi je mozno ponovno izvesti tudi transakcije, ki so bile zaradi
nesrece prekinjene).

2.2.6 Avtorizacijske storitve

Avtorizacijske storitve (ang. authorization services) zagotavljajo, da lahko do podatkov podatkovne
baze dostopajo samo avtorizirani uporabniki. Podatkovno bazo Zelimo namrec zasciti pred
neavtoriziranimi dostopi, namernimi ali nenamernimi. Podatkovna baza navadno vsebuje podatke
razlicnih stopenj zaupnosti. Medtem ko razli¢ne Sifrante lahko vidijo vsi uporabniki, pa na primer
dovolimo vpogled v place zaposlenih samo vodstvenim delavcem (vsak vodja npr. lahko vidi place le
svojih podrejenih). V bazi Studentskega informacijskega sistema je smiselno, da vse podatke o
ocenah Studentov vidi le referat, posamezni ucitelji pa le ocene pri predmetih, katerih nosilci so.
Poleg vpogledov je potrebno natanc¢no dolociti tudi, katere podatke lahko kdo vpisuje ali spreminja.

26

SUPB mora tako vsebovati orodje, s katerim skrbnik PB nastavlja dostopne pravice skupinam
uporabnikov, skladno z njihovo vlogo v poslovnem sistemu.

2.2.7 Integritetne storitve

Integriteta podatkovne baze se nanasa na pravilnost in konsistentnost v njej vsebovanih podatkov.
Lahko jo razumemo kot enega od varnostnih mehanizmov. Integriteto PB zagotavljamo z razli¢nimi
omejitvami (ang. constraints). Gre za pravila, ki jih podatkovna baza oz. v njej vsebovani podatki ne
smejo krsiti. Poznamo razlicne vrste integritetnih omejitev, ki so podrobneje opisane v poglavju
5.2.2.

Podajmo primer: polje za vnos imena Studenta lahko vsebuje le ¢rke in je dolgo npr. najvec¢ 20
znakov. Ce bo uporabnik pomotoma pri vnosu vtipkal $tevilko ali katerega od posebnih znakov, bo
krseno navedeno integritetno pravilo in vnos ne bo mozen.

Pogosta integritetna omejitev je tudi NOT NULL, ki pomeni, da je dolocen podatek obvezen. Primer:
pri vnosu novega Studenta mu moramo doloditi njegovo vpisno Stevilko ter vnesti ime in priimek.

2.2.8 Storitev podatkovne neodvisnosti

SUPB mora zagotavljati neodvisnost programov od fizi¢ne realizacije podatkovne baze. Podatkovno
neodvisnost navadno zagotavljamo z uporabo razli¢nih vrst shem (konceptualna, zunanja, notranja).
Loc¢imo fizicno podatkovno neodvisnost in logicno podatkovno neodvisnost. Konceptualna shema
zagotavlja fizicno podatkovno neodvisnost, saj skrije podrobnosti o tem, kako so podatki dejansko
shranjeni na disku, o strukturi datotek in o indeksih. Zunanje sheme pa zagotavljajo logi¢no
podatkovno neodvisnost (glej tudi poglavje 1.3).

2.2.9 Administratorska orodja

Gre za orodja, ki skrbniku podatkovne baze omogocajo izvajanje administrativnih opravil nad
podatkovno bazo kot so (Connolly in Begg, 2010, str. 54):
e Orodja za spremljanje: spremljanje delovanja in uporabe PB,
e Statisticno analiticna orodja: omogocajo izdelavo statistik uporabe in performans PB.
e Indeksirna orodja: omogocajo spremembe nacinov indeksiranja PB za zagotovitev boljsih
performans njenega delovanja.
e Orodja za realokacijo in brisanje: omogocajo fizicno odstranitev zbrisanih zapisov z naprav
za shranjevanje ter realokacijo PB, kadar je to potrebno.

2.2.10 Podpora komuniciranju

SUPB mora omogocati dostop do podatkovne baze preko omrezja, saj navadno Zelimo imeti eno
samo centralno podatkovno bazo, nameséeno na tako imenovanem podatkovnem strezniku, do
katere dostopajo uporabniki s svojimi racunalniki preko omrezja. Programska oprema, ki omogoca
komunikacijo s SUPB, se imenuje upravljavec podatkovnih komunikacij (ang. Data Communication
Manager) in ni del SUPB. SUPB mora biti sposoben komunikacije z razli¢nimi vrstami upravljavcev
komunikacij.

27

2.3 Komponente okolja SUPB

Okolje SUPB sestavljajo naslednje komponente (Connolly in Begg, 2010, str. 18-21): strojna oprema,
programska oprema, podatki, postopki in ljudje (Slika 6).

Slika 6: Okolje SUPB

Podatki
Strojna Programska pe— Ludie
oprema oprema /\
| Ratunalnika infrastruktura | Most | Cloveski dejavniki |

Vir: Connolly in Begg, 2010, str. 18.

Za delovanje SUPB potrebujemo strojno opremo (ang. hardware), na katero DBMS namestimo.
Kak$no vrsto strojne opreme potrebujemo, je odvisno od samih potreb poslovnega sistema in
zmogljivosti, ki jih mora zagotavljati (npr. koli¢ine podatkov, Stevila uporabnikov, Stevila transakacij,
stopnje varnosti). V¢asih za namestitev SUPB zadostuje Ze osebni raCunalnik, najpogosteje
postavimo zmogljivejSi racunalnik, ki deluje kot streznik, v primeru velikih sistemov (npr. banke) pa
lahko SUPB tece tudi na superracunalniku. SUPB se med seboj razlikujejo po minimalnih zahtevah
strojne opreme, notranjega in zunanjega pomnilniskega prostora. Za racunalnik, kjer bo namescen
SUPB je potrebno zagotoviti dovolj hitrega pomnilnika in diska. SUPB imajo tudi razlicne zahteve
glede operacijskega sistema, na katere jih je mozno namestiti.

Programsko opremo (ang. software) sestavlja sam SUPB in razli¢na druga programska orodja, ki
omogocajo poizvedovanje po podatkovni bazi z uporabo jezikov QBE ali SQL, generatorje obrazcev,
generatorje porodil in druga orodja za hitro izdelavo aplikacij (tudi programski jezik). Pomembna je
tudi omreZna programska oprema, ¢e bo SUPB deloval v mreznem nacinu.

Podatki (ang. data) so s staliS¢a uporabnika najpomembnejSe komponenta okolja SUPB, saj
predstavljajo most med tehnoloskimi komponentami in c¢loveskimi komponentami. Podatke
sestavljajo operativni podatki in metapodatki (podatki, ki opisujejo strukturo shranjenih podatkov).

Postopki (ang. procedures) obsegajo navodila za nacrtovanje in uporabo podatkovne baze oz. SUPB
in sicer:

nacini prijave v SUPB,

nacini uporabe posameznih orodij,

postopki za zagon in zaustavitev SUPB

postopki izdelave varnostnih kopij PB

postopki v primeru okvar strojne ali programske opreme, na katerih teCe SUPB, ali samega SUPB.
Postopki za restavriranje podatkovne baze po taksnih nesrecah (npr. odpovedi diska, na katerem
je bila shranjena PB).

v v v v Vv

28

»

postopki za spreminjanje strukture PB (tabel, povezav,...), reorganizacija PB ¢ez vec diskov ali
raCunalnikov, nastavitve performancnih parametrov, nastavitve parametrov izdelave varnostnih
kopij itd.

Zadnjo komponento okolja predstavljajo ljudje (ang. human), uporabniki podatkovne baze. Sem
spadajo:

»

»
4
4

skrbnik podatkovne baze (ang. DBA — Database Administrator),
analitiki in nacrtovalci PB,

razvijalci aplikacij in seveda

kon¢ni uporabniki.

2.4 Delovanje SUPB

Slika 7 prikazuje zgradbo SUPB. SUPB sestavljajo naslednje komponente (Ramakrishnan in Gehrke,
2003, str. 19-21):

»

Stroj za evaluacijo poizvedb (ang. Query Evaluation Engine):

o Sintakticni analizator (ang. Parser): Sintakticho analizira poizvedbo, ki jo SUPB-ju
posreduje aplikacija.

o Optimizator (ang. Optimizer): Na podlagi informacij o tem, kako so podatki shranjeni,
izdela ucinkovit plan za izvajanje poizvedbe. Plan izvajanja predstavlja nacrt za izvedbo
poizvedbe in je navadno predstavljen kot drevo relacijskih operatorjev.

o Evaluator operatorjev (ang. Operator Evaluator): Na osnovi plana izvajanja analizira
poizvedbo.

o lzvajalec plana (ang. Plan Executor): Izvede poizvedbo po navodilih plana poizvedbe.
Datoteke in metode dostopa (ang. Files and Access Methods): enota, ki omogoca delo z
datotekami.

Upravljalec pomnilnika (ang. Buffer Manager): Prenasa strani iz diska v pomnilnik glede na
bralne potrebe.

Upravljalec prostora na disku (ang. Disk Space Manager): NajniZji nivo SUPB je zadolZen za
upravljanje z diskom. Vse operacije visjih plasti se tukaj prevedejo v nizko-nivojske ukaze za delo
z diskom.

Enota za nadzor socasnosti (ang. Concurrency Control) sestavljata dve komponenti:

o Upravljalec transakcij (ang. Transaction Manager): Zagotavlja zaseganje podatkov z uporabo
dolocenih protokolov in skrbi za razporejanje izvajanja transakcij.

o Upravljalec zaklepanja (ang. Lock Manager): VzdrZuje informacije o zahtevanih in odobrenih
zasezenjih podatkov.

Upravljalec obnove podatkov (ang. Recovery Manager): Vzdrzuje dnevnik in skrbi za obnavljanje

sistema v zadnje skladno stanje pred nesreco.

29

Slika 7: Zgradba SUPB

Navadni uporabniki (zaposleni, stranke, agenti...) Napredni uporabniki,
razvijalci aplikacij, skrbnik PB

Vmesnik za SQL

Spletne aplikacije Zaledne aplikacije e

\
S . >
a U a Prikaz toka ukazov

sQL ykazi

v

roj za evaluacij izv >
Stroj za evaluacijo poizvedb Prikaz interakcije

: Sintakti¢ni
Izvajalec plana)
analizator
Evaluator Optimizator
) /
Upravljalec | <> Datoteke in metode dostopa <—»
transakcij
Upravljalec Upravljalec
e <— Upravljalec pomnilnika |<—>» obnove
zaklepanja
podatkov
Enota za nadzor v
socasnosti < > Upravljalec prostora na disku «—»

SUPB

- —_—

Prikaz referenc

Indeksne datoteke Sistemski katalog

(metapodatki)
Podatkovne datoteke -~ Podatkovna baza

- .

Vir: Ramakrishnan in Gehrke, 2003, str. 20.

2.5 Naloge skrbnika podatkovne baze

Skrbnik podatkovne baze je zelo pomembna vioga v poslovnem sistemu, saj je od kakovosti
njegovega dela odvisna celovitost, razpoloZljivost in zaupnost podatkov v podatkovni bazi. Njegove

naloge so (Ramakrishnan in Gehrke, 2003, str. 22):

» Kreiranje fizinih objektov podatkovne baze;
» Zagon in zaustavitev delovanja SUPB;
» Uglasevanje podatkovne baze:

o Upravljanje s konfiguracijskimi parametri za zagon instance podatkovne baze,

o Upravljanje s parametri delovanja podatkovne baze.

30

» Nadzor nad dnevniki in ostalimi sistemskimi datotekami podatkovne baze;

» Skrb za varnost dostopa do podatkovne baze;

» Skrb za obnovitev podatkovne baze v primeru podatkovnih nesrec. Skrbi tudi za vse postopke, ki
obnovitev omogocajo;

» Sodeluje z ostalimi akterji v okviru IS z namenom spoznavanja trenutnih in bodocih potreb za
potrebe zagotavljanja optimalnega delovanja podatkovnih baz izbranega SUPB.

Vprasanja za ponavljanje

Kaj je sistem za upravljanje s podatkovno bazo (SUPB)?

Katere mehanizme za upravljanje s podatki vsebuje SUPB?

Katere mehanizme za nadzor nad dostopom do podatkov vsebuje SUPB?
Nastej in opisSi komponente okolja SUPB.

Katere komponente sestavljajo SUPB? Kako delujejo?

Nastej klju¢ne uporabnike SUPB in njihova opravila?

Kaj so naloge skrbnika podatkovne baze?

Noukswbnpe

31

3 Podatkovni modeli in vrste SUPB

Model, s katerim opiSemo, kaj bi Zeleli hraniti v podatkovni bazi ter kakSne povezave obstajajo med
elementi, ki jih Zelimo hraniti, se imenuje podatkovni model. Podatkovni model je nacin, kako na
visoki ravni abstrakcije opiSemo podatke, ki jih Zelimo hraniti ter skrijemo nepomembne
podrobnosti. Podatkovni model odraza uporabnikovo percepcijo realnega sveta. V resnici izraza
uporabnikovo predstavo o tem, kako naj bodo podatki shranjeni.

Grad in Jakli¢ (1996, str. 43) definirata podatkovni model kot:

s Definicija 15: posploSeno predstavitev (ponazoritev) podatkov o objektih, dogodkih,
aktivnostih in njihovih povezavah znotraj obravnavanega sistema.

V sploSnem gre pri podatkovnih modelih za opisne mehanizme, s pomocjo katerih so predstavljene
vse tri ravni podatkovne baze. Zunanje in konceptualne sheme predstavljajo logicen opis podatkov
(logi¢ni podatkovni modeli), medtem ko notranja shema predstavlja njihov fizicni opis (fizi¢ni
podatkovni modeli).

Logi¢ni podatkovni modeli se delijo na (Mohori¢, 1992, str. 104):

» Povrsinske podatkovne modele: Temeljijo na abstraktni podatkovni strukturi, za katero sta
definirani mnoZici operacij in integritetnih omejitev. Podatkovna neodvisnost ni popolna,
obstaja tudi problem semanti¢nega opisa podatkov.

» Globinske (semanticne) podatkovne modele: Za razliko od povrsinskih podatkovnih modelov so
tehnolosko povsem neodvisni, omogocajo pa tudi boljsi opis pomena shranjenih podatkov.

V naslednjem poglavju so podrobneje predstavljeni Stirje najpogosteje uporabljani povrsinski
(logicni) podatkovni modeli.

32

Slika 8: Podatkovni model

: Opis, kaj
Fodk ol

model

Opise entitete
Opise entitete in razmerja v
in razmerja na jeziku, ki ga
nacin, ki je Je osnova za generiranje razume ciljni
neodvisen od K tualni SUPB.
ciljnega SUPB onceptualni LOgICI’lI odel

model

Primer konceptualnega
modela

el Primer logi¢nega
_ Model _ RelacU§k| Kk
Entiteta-razmerje podatkovni model | REEERON:
Tehnike
Diagram ER Ra!zrednl Re:Iacuskl
diagram diagram

Konceptualni podatkovni model opiSe entitete in razmerja med njimi na nacin, ki je neodvisen od
nadaljnje izbire ciljnega SUPB. Najpogosteje uporabljana vrsta konceptualnega modela je model
entiteta-razmerje ali ER model. Logicni podatkovni model pa je oblika podatkovnega modela, ki ga
razume cilji SUPB. Pri transformaciji iz konceptualnega v logi¢ni model je tako potrebno izbrati ciljni
SUPB (npr. Oracle, MS SQL ...). Najpogosteje uporabljana vrsta logicnega modela je relacijski model,
ki se uporablja, kadar Zelimo izdelati relacijsko podatkovno bazo. Fiziéni podatkovni model
predstavlja v primeru relacijskega model kar skripta v jeziku SQL, ki je izdelana za to¢no dolocen
SUPB, v katerem jo je moc zagnati, kar povzroci kreiranje PB in njenih gradnikov.

Nacrtovanje podatkovne baze obsega tri glavne faze (Connolly in Begg, 2010, str. 271-275):

e Konceptualno nacrtovanje: izdelava konceptualnega podatkovnega modela, ki je neodvisen
od kasnejse fizitcne implementacije podatkovne baze (cilijnega SUPB, uporabljenega
programskega jezika ali strojne platforme). Model mora zajeti znanje o poslovni domeni, ki
izhaja iz uporabniskih zahtev ter je podlaga za nadaljnje faze nacrtovanja, zato je njegova
pravilnost zelo pomembna. Konceptualno nacrtovanje je podrobneje predstavljeno v
poglavju 4.

e Logic¢no nacrtovanje: izdelava logicnega podatkovnega modela, ki temelji na znanju zajetem
s konceptualnim modelom ter posebnostih izbrane vrste logi¢nega modela (npr. mrezni,
relacijski, objektni model). Logicni model mora v teoriji Se vedno biti neodvisen od
posebnosti konkretnega SUPB (npr. ORACLE relacijske baze, MYSQL relacijske baze), vendar
v praksi modelirna orodja tega ne upoStevajo vedno. Logi¢no nacrtovanje relacijske
podatkovne baze je podrobneje predstavljeno v poglavju 5.2. Logi¢ni model je osnova za
naslednjo fazo, fizicno nacrtovanje PB.

e Fizicno nacrtovanje: izdelava fizicnega podatkovnega modela, ki uposteva vse specifike
ciljnega SUPB (npr. ORACLE 11g relacijske baze). Prvi korak je torej izbira konkretnega SUPB,
v katerega bomo preslikali v predhodni fazi izdelan logiéni model. Ce izberemo relacijski
SUPB, to pomeni tri kljuna opravila. Kreiranje PB (tabel in vseh omejitev, indeksov),
dolocitev najprimernejsih struktur za shranjevanje podatkov in indeksnih tabel ter
nacrtovanje varnostne sheme.

33

Podroben opis izdelave konceptualnega podatkovnega modela se nahaja v poglavju 4, v poglavjih
5.2in 5.4 pa sta opisana postopka logi¢nega in fizicnega nacrtovanja.

Za nacrtovanje podatkovne baze je smiselno uporabiti tako imenovana CASE (Computer Aided
Software Engineering) orodja, npr. Oracle SQL Developer Data Modeler, SAP Sybase
PowerDesigner. Tovrstna orodja omogocajo nacrtovanje na vseh treh nivojih ter avtomatsko
pretvorbo med modeli na razli¢nih nivojih. V poglavju 8.1 na primerih predstavljamo orodje SAP
Sybase PowerDesigner in v poglavju 8.2 Oracle SQL Developer Data Modeler.

Poznamo vec vrst logi¢nih modelov (Mohoric, 1992, str. 109-180, Grad in Jakli¢, 1996, str. 45-75,
Johnson, 1997, str. 9, Rob in Coronel, 2004, str. 33-55):
» Hierarhi¢ni podatkovni model
o Hierarhi¢ni SUPB: IBM-ov IMS.
» Mreini podatkovni model
o Mrezni SUPB: IDS in IDMS.
» Relacijski podatkovni model
o Relacijski SUPB: DB2, Oracle, MS SQL Server, MySQL, MS Access.
» Objektni podatkovni model
o Objektni SUPB: Objectstore, Versant.
» Objektno-relacijski podatkovni model
o Objektno-relacijski SUPB: Oracle, Informix, PostgreSQL.

Najbolj popularen logi¢ni podatkovni model je relacijski model. Objektni podatkovni model
predstavlja novejSo tehnologijo, medtem ko sta hierarhicni in mrezni podatkovni model
predstavnika starejSih modelov. V nadaljevanju prestavljamo znacilnosti navedenih vrst modelov ter
znacilne predstavnike SUPB.

3.1 Hierarhi¢ni podatkovni model

Hierarhi¢ni podatkovni model je nastal konec petdesetih let in temelji na predpostavki, da so podatki
organizirani pretezno v hierarhicni drevesni strukturi. Ta predpostavka se je kasneje izkazala za
napacno, posledica Cesar so zahteve po spremembah hierarhicnega modela oziroma po razvoju
novih vrst modelov.

Osnovni gradnik hierarhi¢ne podatkovne strukture (gozda) je drevo, ki je sestavljeno iz med seboj
povezanih zapisov. Poglavitna slabost hierarhicnega modela je velika redundanca podatkov v
primeru, ko nimamo opravka s povsem hierarhi¢cnim problemom. Omejitev so resili z uporabo
koncepta povezanih dreves, pri cemer pa pravzaprav ne gre vec za drevesa, temvec za vrsto grafa,
kar pa je Ze zelo blizu znacilnostim mreZnega podatkovnega modela.

3.2 MrezZni podatkovni model

Pri mreznem podatkovnem modelu je hierarhi¢na podatkovna struktura zamenjana s splosnim
grafom, kar omogoca bolj splosne povezave med vozlisci (entitetami). Razvit je bil konec Sestdesetih

34

http://en.wikipedia.org/wiki/Informix
http://en.wikipedia.org/wiki/PostgreSQL

let s strani organizacije CODASYL (Conference On Data Systems Languages) oziroma njene delovne
skupine DBTG (Data Base Task Group) z namenom reSevanja nehierarhi¢nih podatkovnih
problemov. Podatkovna struktura je predstavljena z mrezo, njena osnovna gradnika pa sta set
(povezava zapisov dveh logi¢nih datotek) in zapis. MnoZica zapisov predstavlja entitete dolocenega
tipa shranjene v samostojni logi¢ni datoteki. Temeljni problem mreZznega podatkovnega modela je
zapletenost uporabe in slaba preglednost, kar je motece predvsem pri izdelavi kompleksnih
modelov.

3.3 Relacijski podatkovni model

Relacijski podatkovni model temelji na relacijski teoriji, katere utemeljitelj je E. F. Codd. Razvit je bil
leta 1970. Na relacijskem modelu temeljijo skoraj vse danasnje relacijske podatkovne baze oziroma
relacijski SUPB. Gre za trZzno najbolj razsirjene SUBP, ki se dandanes uporabljajo za shranjevanje
podatkov v vecini poslovnih informacijskih resitev. Najvecji trzni delez na tem podrocju tako imajo
IBM (SUPB DB2), Oracle (SUPB Oracle 11g) in v zadnjem ¢asu tudi Microsoft (SUPB SQL Server). Zelo
razsSirjen in priljubljen je tudi odprtokodni relacijski SUPB z imenom MySQL.

Podatkovna baza je v relacijskem modelu predstavljena kot mnozica med seboj povezanih tabel.
Operacije nad podatki v tabelah se izvajajo s pomocjo povprasevalnih jezikov temeljecih na relacijski
algebri (postopkovni jeziki) ali relacijskem racunu (nepostopkovni jeziki). Njegovi glavni prednosti v
primerjavi s predhodnima modeloma sta formalna definiranost in osnovanost na matematicnih
formulah - relacijah ter zagotovljena podatkovna neodvisnost, saj ne vsebuje elementov fizicnega
shranjevanja podatkov. Relacijski podatkovni model oziroma relacijsko podatkovno bazo podrobno
obravnavamo v poglavju 5.

3.4 Objektni podatkovni model

Objektno modeliranje podatkov je rezultat evolucije objektnega nacina razmisljanja v informacijski
tehnologiji. Objektni pristop se je sprva uveljavil na podrocju programskih jezikov, Sele v
devetdesetih letih pa je dosegel razmah tudi na podrocju razvoja informacijskih sistemov in v tem
okviru podatkovnega modeliranja. Od drugih pristopov se loCuje po tem, da medsebojno povezuje
modeliranje podatkov in procesov. Temeljni koncept modela je objekt, ki v sebi zdruzuje tako
podatke kot razpolozljive metode nad njimi. SploSnho mnenje je, da je objektno modeliranje zelo
blizu ¢lovekovega nacina misljenja, zato so mu napovedovali zelo svetlo prihodnost. Kljub temu
dandanes vecina komercialnih sistemov za upravljanje podatkovnih baz Se vedno temelji na
relacijskem podatkovnem modelu, Ceprav Ze nekaj Casa obstajajo tudi SUPB, ki temeljijo na
objektnem modelu (npr. Objectstore in Versant), ki pa imajo Se vedno dolocene slabosti (npr. manj
prijazen poizvedovalni jezik), zaradi katerih se Se niso uspeli docela uveljaviti.

3.5 Objektno-relacijski podatkovni model
Objektno-relacijski model se je v raziskovalnih krogih razvil Ze v zgodnjih devetdesetih letih

prejSnjega stoletja po uveljavitvi objektno usmerjenih programskih jezikov. Najznacilnejsa
predstavnika sta bila lllustra in PostgreSQL, razvita na univerzi Barkeley. Sredi devetdesetih pa so

35

http://en.wikipedia.org/wiki/Illustra
http://en.wikipedia.org/wiki/PostgreSQL

se pojavili tudi prvi komercialni objektno-relacijski SUBP (http://en.wikipedia.org/wiki/Object-
relational_database). Vsi trije najvecji ponudniki relacijskih SUPB — Oracle, Microsoft in IBM — so
tako svoje SUPB razsirili tudi v objektno-relacijske SUPB.

Objektno relacijski model oziroma objektno-relacijska baza je podobna relacijski bazi, le da dodatno
podpira tudi objektno orientiranost. Omogoca torej razsiritev relacijskega podatkovnega modela z
lastnimi podatkovnimi tipi in metodami. S tem skuSa po eni strani odpraviti pomanjkljivosti
klasicnega relacijskega SUPB, po drugi strani pa se ne izpostaviti pomanjkljivostim objektnega.
Stevilni ponudniki relacijskih SUPB se zavedajo, da zgolj relacijski model pogosto ne zadoi¢a
zahtevnejSim aplikacijam in so zato potrebne dolocene razsiritve. Sodobne aplikacije uporabljajo
objektno usmerjenost: uporabnisko razsirljive tipe, enkapsulacijo, dedovanje, polimorfizem,
objektno identiteto. Proizvajalci relacijskih SUPB tako stremijo k vkljucitvi navedenih funkcij, vendar
so realizacije od proizvajalca do proizvajalca razlicne. Tako ne obstaja enoten relacijsko-objektni
model. Lahko bi rekli, da obstaja mnozZica razli¢ic tega modela, katerih znacilnosti so odvisne od
nacina in stopnje realiziranosti objektnih razsiritev. Vsi objektno-relacijski modeli tako uporabljajo
klasicne relacijske tabele in poizvedovalni jezik, vkljuCujejo pa tudi moznost kreiranja objektov.
Nekateri imajo moznost shranjevanja metod (ali procedur, ali prozilcev) kot tudi podatkov v
podatkovno bazo (Connolly in Begg, 2010, str. 922-923).

3.6 Primerjava razli¢nih vrst podatkovnih modelov oziroma SUPB

Stonebraker (1996) je skusal prikazati prednosti in slabosti posameznih vrst SUPB, ki temeljijo na
obravnavanih vrstah podatkovnih modelov (Slika 9). V spodnjem levem kvadrantu se nahajajo
preproste aplikacije, ki procesirajo enostavne podatke in nimajo velikih potreb po poizvedbah. Sem
sodijo na primer urejevalniki besedil, ki za shranjevanje uporabljajo kar datotecni sistem.

36

Slika 9: Primerjava razli¢nih vrst SUPB ter datote¢nega sistema

i
Relacijski SUPB Objektno-relacijski SUPB
TS
Iskalne zmoZnosti/
veéuporabnigka raba Datoteéni sistem Objektni SUPB
\ A

Y

Podatkovna kompleksnost/razsirljivost

Vir: Connolly in Begg, 2010, str. 924.

V spodnjem desnem kvadrantu so tiste aplikacije, ki obdelujejo kompleksne podatke, a
nimajo vecjih zahtev po poizvedovanju. Za te vrste uporabe, na primer programe za racunalnisko
podprto nacrtovanje, so objektni SUPB lahko primerna izbira. V zgornjem levem kvadrantu so tiste
aplikacije, ki obdelujejo preproste podatke, a imajo kompleksne zahteve za poizvedovanju. V to
skupino sodi vecina tradicionalnih poslovnih aplikacij. V zgornjem desnem kvadrantu pa so tiste
napredne aplikacije, ki obdelujejo kompleksne podatke in imajo tudi zahteve po kompleksnih
poizvedbah (povzeto po Connolly in Begg, 2010, str. 923-924).

Vprasanja za ponavljanje

1. Kaj je podatkovni model?

2. Katera vrsta konceptualnega podatkovnega modela je najbolj razsirjena?

3. Katere tri faze sestavljajo postopek nacrtovanja podatkovne baze?

4. Kateri dve glavni vrsti podatkovnih modelov poznate?

5. Katere vrste logi¢nih podatkovnih modelov poznate?

6. Nastejte predstavnike razlicnih vrst SUPB glede na vrste podatkovnih modelov, na katerih
temeljijo.

7. Katera vrsta logi¢nih podatkovnih modelov oz. SUPB je v praksi danes najbolj uveljavljena?

8. Kaj zdruZuje relacijsko-objektni podatkovni model oz. SUPB? Zakaj se je uveljavil?
9. Katere vrste SUPB so najprimernejsi za razlicne kombinacije podatkovne kompleksnosti (visoka,
nizka) ter potreb po iskalnih zmoznostih (visoka, nizka)?

37

4 Konceptualno nacrtovanje podatkovne baze

Konceptualno nacrtovanje je opredelitev podatkovnih potreb oz. zahtev poslovne domene s
pomocjo konceptualnega modela. Konceptualno nacrtovanje preko konceptualnega modela poskrbi
za opis pomena podatkov, potrebnih za poslovno domeno. Konceptualnega nacrtovanja ne moremo
avtomatizirati, za njegovo izvedbo je odgovoren analitik. Gre za prenos semantike v model. Zelo
pomembno je sodelovanje uporabnikov in interakcija z uporabniki, saj so uporabniki nosilci znanja
o poslovni domeni oziroma poznavalci semantike. Konceptualno naértovanje mora upostevati tudi
poslovna pravila, ki v domeni veljajo. Z vidika semanti¢ne pravilnosti podatkovne baze je
konceptualno nacrtovanje najbolj kriticno, saj se napake narejene pri konceptualnem nacrtovanju
prenasajo naprej na naslednje modele. Konceptualni model je neodvisen od vrste ciljnega SUPB,
vendar pa v primeru, da Ze v zacetku vemo, kateri SUPB bo uporabljen, lahko Ze v tej fazi
upostevamo tudi nekatere njegove omejitve (npr. v relacijski PB ne moremo imeti vecvrednostnih
atributov).

Konceptualni model mora biti preprost, enostaven za uporabo ter lahko in nedvoumno razumljiv,
saj sluzi tudi za komunikacijo med uporabnikom in analitikom. Vsak koncept modela mora imeti
svoj jasno definiran pomen. Model naj bo predstavljen tudi v grafi¢ni obliki, saj ta bistveno poveca
njegovo informativnost. Pri tem se morajo grafi¢ni simboli za posamezne koncepte jasno razlikovati
med seboj.

4.1 Tehnike konceptualnega nac¢rtovanja

Konceptualne modele lahko predstavimo z razlicnimi diagramskimi tehnikami. Najpogosteje
uporabljani tehniki za predstavitev konceptualnih podatkovnih modelov sta diagram entiteta-
razmerje (ang. entity-relationship diagram) ter razredni diagram (ang. class diagram). V
nadaljevanju poglavja obravnavamo diagram entiteta-razmerje, imenovan tudi entitetni diagram.
Razredni diagrami pa so predstavljeni v poglavju 7, kjer predstavljamo znaclilnosti objektne
podatkovne baze in njenega nacrtovanja.

Pri diagramski tehniki entiteta-razmerje je znanih veC notacij, od katerih se najbolj pogosto
uporabljata Martinova in Chenova notacija. Chen je svojo notacijo predstavil Ze leta 1976, uporablja
pa se v metodologiji Merise. Martinova notacija pa je opisana v vec gradivih, ki jih je Martin s
sodelavci predstavil v drugi polovici osemdesetih. V nadaljevanju predstavljeni primeri so izdelani
z uporabo Martinovo notacije. Z uvajanjem novih konceptov je bila razvita tehnika razsirjenih
entitetnih diagramov (ang. extended Entity-Relationship Diagram - eERD), ki je semanti¢no
bogatejsa (Krisper in drugi, 2004).

38

4.2 Gradniki konceptualnega modela

Osnovni gradniki konceptualnega modela entiteta razmerje (modela ER) so (Mohori¢, 1997, str. 58,
Rob in Coronel, 2004,str. 124-125):

e entitetni tip,

e atribut,

® razmerje,

e enoli¢ni identifikator (entitetni identifikator),

e ureditev tipov vkljuéno z generalizacijo in specializacijo.

Podatki, ki jih zbiramo o entiteti, se nanasajo na njihove lastnosti - atribute, ki so pomembni za
izvajanje poslovnih procesov. Entiteta je realni ali abstraktni predmet obravnave (npr. oseba,
predmet, dogodek), o katerem zbiramo podatke in je znacilen ali pomemben za poslovni sistem.

4.2.1 Entitetni tip

Z abstrakcijo ugotovimo, da obstajajo po lastnostih sorodni tipi entitet. V domeni visoke Sole so to
npr. $tudenti, predmeti, pedagoski delavci. Predstavimo jih z entitetnimi tipi STUDENT, PREDMET,
PEDAGOSKI DELAVEC (Slika 10).

¢ Definicija 16: Entitetni tip je skupina entitet (objektov) z enakimi lastnostmi, pri cemer lahko

gre za objekte iz realnega sveta ali abstraktne objekte (Connolly in Begg, 2010, str. 322).

Na entitetnih diagramih se entitetni tip predstavi s pravokotnikom, v katerega je vpisan njegov
naziv. Obicajno je to samostalnik v ednini, ki je kratek, hkrati pa dovolj dobro in nedvoumno opisuje
oz. predstavlja vlogo in pomen entitetnega tipa.

Slika 10: Primeri entitetnih tipov pri nacrtovanju podatkovne baze visoke Sole

Student Pedagoski delavec

Predmet

4.2.2 Atribut

Entiteta ima lahko veliko lastnosti, le del teh lastnosti je zanimiv oz. pomemben za opazovano
poslovno domeno. Lastnosti, ki so pomembne za opazovano poslovno domeno, vklju¢imo v
konceptualni model tako, da jih kot atribute dodamo entitetnemu tipu. Za entitetni tip Student tako
ugotovimo, da so zanj pomembne lastnosti - atributi VPISNA STEVILKA, IME, PRIIMEK, DATUM
ROJSTVA, NASLOV in drugi.

< Definicija 17: Atributi predstavljajo lastnosti entitet, tako da identificirajo, tipizirajo,

poimenujejo, opisujejo, kvalificirajo entitete. Atributi se v grobem delijo na identifikacijske,
opisne in izvedene.

39

Slika 11: Primeri atributov entitetnega tipa STUDENT

Student
Vpisna Stevilka <pi> | €< Enolicni identifikator

Ime

| Pnimek

Datum mojdva
Naslov
Telefon
E-postni nadov

Opisni atributi

Z enolicnim identifikatorjem entitetnega tipa (ang. primary indentifier, oznaka <pi>) se vsaka
entiteta enolicno in nedvoumno identificira. Enoli¢ni identifikator entitete predstavlja tisto
podmnozico lastnosti, ki posamezno entiteto enoli¢cno doloc¢a. Enoli¢ni identifikator entitete je lahko
sestavljen iz enega ali veC atributov ter ene ali ve¢ povezav. Identifikacija je lastnost, ki je entiteti
trajno pripisana, ne glede na spremembo njene strukture ali stanja, omogoca pa tudi spremljanje
zgodovine njene pojave v IS. Vrednosti identifikacijskega atributa ni dovoljeno spreminjati. Z ozirom
na to, ali tvorijo enoli¢ni identifikator le atributi znotraj entitetnega tipa ali pa je v enolichnem
identifikatorju tudi kaksno razmerje, lo¢imo med mocnim entitetnim tipom in Sibkim entitetnim
tipom. V primeru entitetnega tipa STUDENT (), enoli¢ni identifikator predstavlja VPISNA STEVILKA,
ki je atribut znotraj tega tipa, zato gre v tem primeru za mocni entitetni tip. Enoli¢ni identifikator
oznacimo z oznako <pi> in ga podcértamo, da se lo¢i od ostalih atributov.

Opisni atributi opisujejo koli¢inske in kakovostne lastnosti entitet. Njihove vrednosti se lahko
spreminjajo glede na spreminjanje stanja in lastnosti entitet. V primeru entitetnega tipa STUDENT
(Slika 11) so vsi ostali atributi, razen VPISNE STEVILKE, opisni atributi.

Vrednosti izvedenih atributov se izracunajo iz definiranih vrednosti drugih atributov. Formule,
algoritmi in logicni izrazi za izracun vrednosti teh atributov so tudi del specifikacije podatkovnega
modela. Izvedeni atributi niso v skladu s 3. normalno obliko, vendar se dopuséajo, ¢e so pod
nadzorom. V primeru entitetnega tipa STUDENT (Slika 11) izvedenih atributov nimamo. lzvedeni
atribut bi v tem primeru lahko bil STAROST, ki bi se izra¢unal iz atributa DATUM ROJSTVA.

Kadar je vrednost pri nekem atributu obvezna, pravimo, da je to obvezni atribut (ang. Mandatory).
Ce vrednost ni obvezna, je to neobvezni atribut. Atributi, ki so del enoli¢nega identifikatorja, so
vedno tudi obvezni atributi. Vsak atribut pripada dolo¢enemu podatkovnemu tipu (ang. data type).
Podatkovni tip atributu doloimo v skladu s pomenom atributa. Najbolj pogosto uporabljani
podatkovni tipi so znakovni, numeri¢ni in datumski. Pri nekaterih podatkovnih tipih je potrebno
dolociti Se dolzino atributa, na primer pri znakovnem in numeri¢nem. Pri datumskem to ni potrebno,
saj je datum vedno enake dolZine. Slika 12 prikazuje obvezne in neobvezne atribute entitetnega tipa
STUDENT. Obvezni atributi so oznaéeni z oznako <M>, ki pomeni njihovo obveznost (ang.
Mandatory). Obveznost pomeni, da bo pri vnosu novega sStudenta v podatkovno bazo potrebno
vnesti vrednosti vpisne Stevilke, imena, priimka in datuma rojstva, medtem ko je dopusceno, da se
podatki o naslovu telefonu in e-postnem naslovu ne vnesejo. Definirani so tudi podatkovni tipi z
dolzinami. Tako na primer atributa ime in priimek omogocata vnos do 15 znakov (Text(15)).

40

Slika 12: Dologitev obveznosti atributov ter podatkovnih tipov entitetnega tipa STUDENT

Student
Vpisna tevilka <pi> Integer =M=
Ime Text (158) <M= - - .
Priimek Text (15) <M> :| Obvezni atributi
Datum rojstva Date <M=
Naslov Text (30)
Telefon Text (13) j Neobvezni atributi
E-po3tni naslov Text (15)
l[dentifier 1 <pi=

4.2.3 Razmerje

Entitete nastopajo v medsebojnih povezavah. Entitete istega tipa nastopajo v istovrstnih povezavah.
Vrste povezav med entitetami se v modelu ER obravnavajo kot razmerja med entitetnimi tipi.
Entitetni diagram tako prikazuje tudi razmerja (ang. relationship).

% Definicija 18: Razmerje je mnoZica smiselnih povezav med entitetnimi tipi (Connolly in Begg,
2010, str. 324).

Vsako razmerje ima naziv, ki je obic¢ajno glagol ali glagolski samostalnik in opisuje vlogo entitet v
njem. Najpogostejsa so razmerja med dvema entitetnima tipoma, ¢eprav je mozna tudi povezava
entitetetnega tipa samega s sabo in pa povezava vec entitetnih tipov med seboj. Med parom
entitetnih tipov je na diagramu lahko prikazanih tudi ve¢ razmerij: npr. STUDENT, KRAJ — ima stalno
prebivalis¢e, zacasno prebiva (Slika 13). Razmerje ima atributiven znacaj. To pomeni, da z razmer;i
med entitetnimi tipi ravno tako opisujemo lastnosti entitet.

Slika 13: Razmerja in Stevnosti

Oznaka stevnosti

Student Kraj

Razmerje

Pomembna lastnost razmerja je Stevnost, ki prikazuje, s koliko entitetami je dolo¢ena entiteta v
razmerju in obratno. Poznamo naslednje mozne vrste Stevnosti (Krisper in drugi, 2004):

» ena proti ena: vsaka primerek entitetnega tipa A je povezan z natanc¢no enim primerkom
entitetnega tipa B in obratno,

» ena proti mnogo: vsak primerek entitetnega tipa A je povezan z ni¢, enim ali ve¢ primerki
entitetnega tipa B, vsak primerek entitetnega tipa B pa je povezan z natan¢no enim primerkom
entitetnega tipa A ali

41

» mnogo proti mnogo: pri povezavi med primerki entitetnih tipov A in B ni omejitev, kar pomeni,
da je vsak primerek entitetnega tipa A povezan z ni¢, enim ali ve¢ primerki entitetnega tipa B, in
obratno.

Slika 14: Grafi¢ni prikaz Stevnosti in obveznosti razmerij/povezav
-o+ (0,1)
—+ (1,1)
-0¢ (0,n)
—+< (1,n)

Slika 14 podaja graficni prikaz razli¢nih vrst Stevnosti in obveznosti. Pri tem je potrebno povedati, da
se grafi¢ni prikaz v razlicnih modelirnih orodjih lahko nekoliko razlikuje.

Razmerje »ima stalno prebivali$¢e« med STUDETOM in KRAJEM (Slika 13) pove, da ima vsak $tudent
stalno prebivaliS¢e v natan¢no enem kraju. V obratno smer pa, da ima v dolo¢enem kraju (iz Sifranta
vseh krajev) stalno prebivalis¢e ni¢, eden ali ve¢ Studentov. Razmerje »zacasno prebiva« med
STUDETOM in KRAJEM pove, da $tudent lahko nima stalnega prebivali$¢a, lahko pa ga ima v natanko
enem kraju. V obratno smer pa, da v dolo¢enem kraju (iz Sifranta vseh krajev) za¢asno prebiva nic,
eden ali vec Studentov. Tukaj je pod okrilje Stevnosti dodana tudi obveznost razmerja.

Slika 15: Primeri razmerij/povezav med entitetnimi tipi

Asistent o i= - Pedagoski delavec
Student o vpie = Predmet
Predmet | I2 rezpizen =l Izpitni rok

Slika 15 prikazuje primere povezav med entitetnimi tipi v domeni visoke Sole. Prvo razmerje »je«
pove, da je vsak asistent pedagoski delavec. V drugo stran pa, da pedagoski delavec ni nujno asistent
(lahko je ucitelj). Drugo razmerje »vpiSe« pove, da vsak Student vpiSe enega ali ve¢ predmetov. V
drugo smer pa, da je na nek predmet lahko vpisanih nic¢ ali ve¢ Studentov. Tretje razmerje »je
razpisan« pove, da je za vsak predmet razpisan en ali vec izpitnih rokov. V drugo smer pa, da se
dolocen izpitni rok razpise za natanko en predmet.

42

Slika 16: Primer konceptualnega modela visoke Sole

Student

i S) Prijava Vpima tevilka <pi>
Id rok <pi= S2 nanasa = - vnese Ime
Datum in ura izpita I o< ID_pnjava =P B0 F priimek
Stevilo prijavijenih patum prljlave Datum rojstva
Datum odjave I

MNaslov
!4 Telefon

B E-posini nadov
se nanasa
s opravlja 0 lja
je razpisan Izpit
Id_izpit =pi=
Zap 5t polaganja
Ocena
Datum vpisa ocene _
4 e
Predmet Pedagosk delavec
:.fazgi;edm et 2piz |ID_delavca =pi=
i . Ime
Kreditne tocke jenosilec i
Semester =0 =] F'mmvekl
E-poStni naslov
Geslo

Slika 16 prikazuje primer konceptualnega modela visoke 3ole, ki vkljuéuje entitetne tipe STUDENT,
PEDAGOSKI DELAVEC, PREDMET, IZPIT, PRIJAVA in IZPITNI ROK ter njihova medsebojna razmerja. V
konceptualnem modelu lahko nastopajo tudi veévrednostni atributi (npr. posamezni Student ima
lahko vec telefonov ali E-postnih naslovov). Prav tako lahko nastopajo razmerja s Stevnostjo mnogo
proti mnogo kot je primer razmerja »je nosilec« med PREDMETOM in PEDAGOSKIM DELAVCEM, ki
pove, da je pedagoski delavec lahko nosilec ni¢ (Ce gre za asistenta) ali ve¢ predmetov. V drugo stran
pa, da ima predmet lahko enega ali ve€ nosilcev. Vecvrednostne atribute in razmerja mnogo proti
mMnogo moramo v primeru izbire relacijske podatkovne baze odpraviti v logichem modelu.

Rekurzivno razmerje je vrsta razmerja, kjer isti entitetni tip nastopa veckrat v razli¢nih vlogah. Pri
navadnih razmerjih navadno ne oznacujemo vlog na vsaki strani razmerja, ampak razmerja le
poimenujemo. Pri rekurzivnih razmerjih je smiselno poimenovati tudi vloge sodelujocih entitet na
vsaki strani razmerja. Slika 17prikazuje primer rekurzivnega razmerja.

Slika 17: Primer rekurzivnega razmerja

| nadzira

Delavec

ZAPOSLENI Vodja

Z rekurzivnim razmerjem »nadzira« modeliramo hierarhi¢no strukturo poslovnega sistema. Vsakega

eves

43

§tevnost 0). V drugo smer pa zaposleni nadzira ni¢ ali ve¢ delavcev. Ce gre za vodstvenega delavca
ta nadzira svoje podrejene (teh je lahko vec), v primeru da ne gre za vodstvenega delavca pa
zaposleni ne nadzira nikogar (Stevnost 0).

Generalizacija in specializacija sta postopka urejanja entitetnih tipov v hierarhijo oziroma v odnos
nadtip-podtip (Rob in Coronel, 2004,str. 150-153).

Specializacijo navadno uporabimo pri nac¢rtovanju z vrha navzdol. Za specializacijo entitetnega tipa
se navadno odlocimo ce:
e obstajajo entitete, o katerih Zelimo poleg skupnih lastnosti, hraniti tudi nekatere specificne
lastnosti (specificne atribute),
e nekatere entitete nastopajo v dolocenih specifi¢nih razmerjih z drugimi entitetnimi tipi.

Primer specializacije: v enitetnem tipu OSEBA imamo atribute EMSO, Ime, Priimek, Vpisna $tevilka
in Davcna Stevilka. Ker ugotovimo, da Vpisne Stevilke za zaposlene na Soli ne potrebujemo, in prav
tako ne potrebujemo davcéne Stevilke Studentov, se odloimo za specializacijo entitetnega tipa
OSEBA. Uvedemo podtipa STUDENT in ZAPOSLENEC. Skupni atributi ostanejo v nadtipu OSEBA,
specifi¢ne atribute pa premaknemo v podtipa STUDENT in ZAPOSLENEC kot kaZe slika (Slika 18).

Ce uporabljamo pristop od spodaj navzgor pa lahko najprej identificiramo podtipa STUDENT (z
atributi EMSO, Ime, Priimek, Vpisna $tevilka) in ZAPOSLENEC (EMSO, Ime, Priimek, Davéna $tevilka).
Zatem ugotovimo, da ta dva entitetna tipa vsebujeta skupne atribute in zato izvedemo
generalizacijo. To pomeni, da uvedemo nadtip OSEBA, v katerega premaknemo skupne atribute
(EMSO, Ime, Priimek).

Slika 18: Primer specializacije entitetnega tipa OSEBA

OSEBA

EMSO =pi> Number {13} <M=
Ime Variable characters (20}
Priimek Varigble characters (20}

Frimami kljué <pi=

}

primer specializacije

STUDENT ZAPOSLENEC

Vpisne $tevilks <pi> Mumber(8) =M= Cavina Stevilka <pi> Mumber (8) =M=
Frimarmi kljug <pi= Primarni kljué <pi>

Slika 18 prikazuje primer specializacije entitetnega tipa OSEBA na podtipa STUDENT in ZAPOSLENEC.
V tem primeru bomo za Studente dodatno hranili vpisno Stevilko, za zaposlence pa davéno Stevilko.
Seveda za vsakega $tudenta kot zaposlenega hranimo podatke o EMSO, imenu in priimku (pravimo,
da podtipi dedujejo vse atribute nadtipa, v tem primeru torej entitetnega tipa OSEBA). Ce gledamo
isto sliko od spodaj navzgor pa re¢emo, da tipa STUDENT in ZAPOSLENEC generaliziramo v nadtip
OSEBA.

44

4.3 Konceptualno na¢rtovanje podatkovne baze na primeru skladisc¢a

4.3.1 Opis domene

Podjetje Hramba d.d. ima v lasti vec skladis¢ na razli¢nih naslovih in krajih. Skladis¢a so razdeljena
na posamezne osteviléene prostore. Stevilke prostorov so unikatne glede na posamezno skladi$ce,
sicer se lahko ponovijo.

V podjetju so se odlocili, da bodo izgradili nov informacijski sistem, ki bo omogocal izposojo
prostorov v skladis¢ih razlicnim najemnikom. Najemnik najame enega (najame lahko le celoten
prostor) ali vec prostorov od nekega datuma naprej za doloceno Stevilo dni. Isti prostor seveda lahko
sposodimo ponovno, vendar moramo preveriti, da le ta ni zaseden oz., da se je zadnji najem Ze
iztekel. Vsak prostor ima doloceno kapaciteto in ceno najema na dan.

Najemnik je lahko le pravna oseba z doloceno davcéno Stevilko, nazivom, naslovom in krajem. Kraje
imamo zapisane v Sifrantu.

4.3.2 Izdelava konceptualnega podatkovnega modela

V okviru izdelave konceptualnega podatkovnega modela:
e [dentificiramo entitetne tipe,
e Identificiramo atribute,
e Atributom dolo¢imo podatkovne tipe oziroma domene,
e Vsakemu entitetnemu tipu doloc¢imo enolicni identifikator,
e Entitetne tipe medsebojno poveZzemo z razmerji,
e Razmerja ustrezno poimenujemo, dolo¢imo njihove stevnosti, obveznosti in odvisnosti.
e dolo¢imo morebitne obvezne atribute.

Za izdelavo konceptualnega modela uporabimo orodje Oracle SQL Developer Data Modeler.

4.3.3 Konceptualni podatkovni model skladisca

Slika 19 prikazuje konceptualni model PB podjetja Hramba glede na opisano domeno oz. poslovne
zahteve podjetja.

45

Slika 19: Konceptualni podatkovni model podjetja Hramba

Hraj Skladisce Fhemier
P " Postna stevilka HUMERIC F " ID_skladisce HUKMERIC P " ID_prostar NUMERIC
Ime kraja WARCHAR (30) Maslow Naslow Cena najema na dan NUMERIC
= Kraj PK (Postna stevilka) H|— — — — —}<JF " Postnastevila NUMERIC |44 | Kapacitata VARCHAR (30)
= Skladisce P (ID_skladisce) PF" ID_skladisce NUMERIC
= Prostor PK {ID_prostar, [D_skladisce)
-+ T
[T
h |
A |
Najemnik Najem |
P " Davecna_st NUMERIZ F " Dawena_st NUMERIZ |
Naziv VARCHAR F " ID_prostor MUMERIC |
Naslov Maslow F = ID_skladisce NUMERIZ
F " Postna stevilka MUMERICZ _H _____ }é Datum najema Date I
== Najemnik PKv1 (Davena_st) Stdninajema NUMERIC 35 — — — — — — — — — — — — — !
P " ID_najem NUMERIZ
= Majemn PK{ID_najem)

4.4 Pristopi k na¢rtovanju podatkovne baze

lzdelava ER modela poteka v korakih, saj se s problemom, ki ga modeliramo spoznavamo
postopoma. Tako najprej izdelamo grobe orise modela ter se kasneje vedno bolj spus¢amo v
podrobnosti. Postopek izdelave modela lahko do dolo¢ene mere formaliziramo z uporabo
standardnih korakov. Obstajata dva glavna pristopa k nacrtovanju podatkovne baze (Mohoric, 1992,
str. 67-88):

» pristop od spodaj navzgor in
» pristop z vrha navzdol.

Pri pristopu od spodaj navzgor zacnemo z identifikacijo lastnosti oz. atributi, poiS¢emo njihove
funkcionalne odvisnosti ter jih nato zdruZzujemo v skupine (entitetne tipe oz. relacije). Tak pristop
predstavlja na primer normalizacija, ki bo opisana v poglavju 5.3. Pristop od spodaj navzgor je
primeren za enostavne podatkovne baze z majhnim Stevilom atributov.

Pri pristopu z vrha navzdol zacnemo podatkovni model graditi tako, da najprej identificiramo le
nekaj osnovnih entitetnih tipov in razmerij. Kasneje dodajamo atribute ter povezave med
entitetnimi tipi. Entitetne tipe lahko nadalje razgrajujemo na podtipe, kar imenujemo specializacija.
Tak pristop predstavlja izdelava diagrama Entiteta — Razmerje (ER). Pristop z vrha navzdol je
primernejsi za modeliranje vedjih, bolj kompleksnih podatkovnih baz.

Poleg navedenih dveh pristopov poznamo Se pristopa od znotraj navzven ter pristop po delih.
Slednji predstavlja v praksi najbolj uporabljan pristop, saj nacrtovanje razdelimo na vec laZje
obvladljivih delov in sicer:

Najprej kreiramo okvirno shemo z najpomembnejSimi entitetnimi tipi in razmerji med njimi.
Shemo razdelimo na podrocja (jedra so identificirani entitetni tipi).

Za vsako podrocje izdelamo podmodel.

Posamezne podmodele na koncu zdruzimo v en podatkovni model.

v v v Vv

46

Prednost pristopa po delih je vzporedno nacrtovanje podmodelov posameznih podrocij, slabost pa,
da je potrebno podmodele na koncu zdruziti, pri éemer lahko naletimo na dolocene
nekonsistentnosti ali nasprotja, ki jih je potrebno razresiti.

Vprasanja za ponavljanje

Kaj je konceptualni podatkovni model?
Katere tehnike predstavitve konceptualnega modela poznate?
Kateri gradniki nastopajo pri entitethem modelu oz. diagramu?
Kaj je entiteta in kaj entitetni tip?
Kaj je atribut?
Kaksne vrste atributov poznate?
Kaj je enoli¢ni identifikator?
Kaj je potrebno doloditi atributu?
Kaj pomeni obveznost atributa? Kateri atribut je vedno obvezen?
. Kaj je razmerje?
. Kaksne Stevnosti razmerij poznate? Kaj pomenijo?
. Katere vrste pristopov nacrtovanja PB poznate?
. Kaj je znacilno za pristop od spodaj navzgor? Za kakSne PB je primeren?
. Kaj je znacilno za pristop z vrha navzdol? Za kaksne PB je primeren?
. Kaj je znacilno za pristop po delih?
. Kateri od pristopov je v praksi najbolj uporaben? Kaj je njegova prednost in kaj slabost?

Lo NU; s WN R

o o S SE Y Sy S T
O Uh WN R O

Naloge

4.1 Na podlagi opisa domene smucarskih skokov izdelajte konceptualni podatkovni model. Pritem
entitetni tip SKOK modelirajte kot Sibki entitetni tip. Ne pozabite:

e dolociti podatkovnih tipov oziroma domen atributom,

e dolociti enoli¢nih identifikatorjev,

e dolociti morebitnih obveznih atributov,

e doloditi in poimenovati razmerij, dolociti njihove Stevnosti, obveznosti in odvisnosti.

Uporabite orodje Oracle SQL Developer Data Modeler.

Opis domene
V Planici vsako leto prirejajo tekmovanje v smucarskih skokih in poletih. O tekmovanjih zbiramo
veC podatkov: datum in Cas zacCetka tekmovanja, ime tekmovanja (npr. 20. tekmovanje za

47

Svetovni pokal), predviden cas trajanja in na kateri skakalnici poteka (npr. 90 metrska
skakalnica). Neko tekmovanje lahko poteka le na eni izmed skakalnic.

Na tekmovanje se lahko prijavijo tekmovalci, za katere moramo poznati: ime, priimek in ime
drzave iz katere prihaja (npr. Norveska). Za vsakega tekmovalca vodimo tudi podatke o skokih,
ki jih je izvedel na posameznem tekmovanju. Za vsak skok poznamo dolzino skoka v metrih (npr.
158,6), skupno oceno za slog v tockah (npr. 8,98), status skoka (npr. uspesen, razveljavljen,
padec ipd.) in zaporedno Stevilko skoka (vsak tekmovalec lahko izvede vec skokov).

4.2 Na podlagi opisa domene prodajalne avtomobilov izdelajte konceptualni podatkovni model.
Ne pozabite:

e dolociti podatkovnih tipov oziroma domen atributom,

e dolociti enoli¢nih identifikatorjev,

e dolociti morebitnih obveznih atributov,

e dolociti in poimenovati razmerij, dolociti njihove Stevnosti, obveznosti in odvisnosti.

Uporabite orodje Oracle SQL Developer Data Modeler.

Opis domene
Podjetje TineCars d.o.0. se ukvarja s prodajo vozil razlicnih znamk. Za podporo svojemu
poslovanju potrebuje informacijski sistem.

V prodajalni avtomobilov o avtomobilu Zelijo hraniti Se naslednje podatke: model, letnik, St.
motorja, St.Sasije. Dodatno hranijo opise vse dodatne opreme, ki je na voljo.

Cena avtomobila je sestavljena iz cene osnovnega modela ter cene izbrane dodatne opreme.
Dodatno na koncno ceno lahko vplivajo tudi razlicne akcije. Za akcijo zabelezimo njeno ime, opis,
trajanje in popust, ki ga prinasa.

Pri nakupu si stranka izbere avto dolo¢ene znamke in modela, nato pa Se vso Zeleno dodatno
opremo. Cena brez DDV je tako vsota cene osnovnega vozila in cen vseh izbranih artiklov
dodatne opreme. Znesek popusta je odvisen od morebitne akcije za dolo¢en model avtomobila.
Zatem se izraCunata koncna cena brez DDV in konc¢na cena z DDV (komentirajte ali boste/ne
boste hranili ta dva atributa).

Zabelezimo tudi prodajalca, ki je avto prodal, da mu bo delodajalec lahko izpla¢al morebitni
dodatek za delovno uspesnost.

48

5 Relacijska podatkovna baza

Za konceptualnim nacrtovanjem nastopi logi¢no nacrtovanje podatkovne baze. Osnova logi¢nega
modela je jezik, ki je razumljiv cilinemu SUPB. Ce izberemo relacijski SUPB, potem govorimo o
relacijskem modelu.

5.1 Relacijska teorija

Temelje relacijske teorije, na kateri slonijo vse danasnje relacijske podatkovne baze, je podal E.F.
Codd leta 1970 v ¢lanku z naslovom "A Relational Model of Data for Large Shared Data Banks". V
njem je podal mnoZico pravil in principov za upravljanje podatkov in jih strnil v relacijski model.
Ideja se je hitro Sirila v informacijskih krogih in kmalu je postala predmet proucevanj strokovnjakov
po univerzah in v industriji. Pomenil je revolucijo na podrocju podatkovnih baz in je hitro nadomesti
starejSe modele (hierarhi¢nega in mreznega). Je zelo enostaven za razumevanje in tako tudi
neizkuseni uporabniki lahko hitro razumejo vsebino podatkovne baze. Njegova prednost so tudi
enostavni, vendar mocni jeziki za poizvedovanje po vsebini podatkovne baze (QBE in SQL).

Relacijska teorija podaja temelje danes najbolj razsirjenemu relacijskemu podatkovnemu modelu.
Osnovna koncepta, ki ju je moc srecati v relacijski teoriji sta relacija in domena.

5.1.1 Relacija

Po definiciji je relacija r podmnozica kartezijskega produkta domen:
rcD1xD2x...xDn
oziroma mnozica urejenih n-teric
r={tl, t2, ...tm},
pri cemer je vsaka n-terica sestavljena iz komponent
ti = (ki1, ki2, ...kin), 1<=i<=m,
ki so elementi domen: kj € Dj, 1<=i<=m, 1<=j <=n.

Konéno Stevilo m dolo¢a moc¢ ali Stevnost relacije, Stevilo domen n pa stopnjo relacije (Mohoric,
1992, str. 110).

Relacije istega tipa so v sistemih za upravljanje podatkovnih baz prikazane v obliki
dvodimenzionalnih tabel. Vrstica tabele predstavlja posamezno relacijo, medtem ko predstavlja
stolpec domeno oziroma atribut. Atribut A; je v relacijski teoriji definiran kot preslikava mnozice
objektov O vdomeno Di: Ai: O — Di. V primeru, ko je relacija funkcija (kar je ena od zahtev v postopku

49

normalizacije) se lahko relacijo definira tudi s pomocjo preslikav kot mnozico n-teric (Mohoric, 1992,
str. 112).:

r = {(A1(0),A2(0), ...An(0)): 0 € O}

5.1.2 Relacijska shema

Vsaki relaciji pripada natanko ena relacijska shema. Relacijska shema predstavlja semantiko
oziroma pomen relacije. Relacijsko shemo sestavlja oznaka sheme R ter lista atributov Ai s
pripadajo¢imi oznakami domen Di.

R (A1: D1, A2: D2, ..., An: Dn)

Primer relacijske sheme:
Oseba(lme: |, Starost: C, Teza: C) pri cemer domeni | in C obsegata

Domena, ki obsega imena: | = {Tine, Meta, Jure, Ana}
Domena, ki obsega interval celih Stevil: C=1, 2,... 200

5.1.3 Funkcionalne odvisnosti

Naslednji pomemben element relacijske teorije so odvisnosti, med njimi najbolj funkcionalna
odvisnost, s pomocjo katere so definirani tudi kljuci relacije.

V relacijski shemi R velja X — Y (podmnozica atributov X funkcionalno dolo¢a podmnoZico atributov
Y), ¢e v nobeni relaciji, ki pripada shemi R, ne moreta obstajati dve n-terici, ki bi se ujemali v
vrednosti atributov X in se ne bi ujemali v vrednosti atributov Y.

Podmnozica atributov X pa je kljuc relacijske sheme R v primeru, ko X — A1A;..An in ne obstaja X', ki
bi bil prava podmnozica X in bi prav tako funkcionalno dolocal vse atribute relacijske sheme.

Relacijska shema lahko vsebuje vec kljucev (kandidatov za glavni kljuc¢), med katerimi se izbere glavni
klju¢, ostalim pa preostane vloga nadomestnih kljucev. V relacijski teoriji ima pomembno mesto tudi
zunanji ali povezovalni kljug, ki predstavlja temelj za vzpostavitev povezav med relacijami (Mohoric,
1992, str. 116).

Vprasanja za ponavljanje

Kdo in kdaj je postavil temelje relacijske teorije?

Kaj je relacija?

Kaj predstavlja relacijska shema? Kako je sestavljena?

Kaj pomeni, da v relacijski shemi R X funkcionalno doloc¢a Y (X — Y)?

Kdaj je podmnotZica atributov X kljuc relacijske sheme?

Ali relacijska shema lahko vsebuje vec kljucev? Kaj storimo v tem primeru?

ok wWwN R

50

5.2 Logi¢no nacrtovanje

Logicno nacrtovanje je proces izdelave logi¢nega podatkovnega modela za podatke specificne
domene, ki sledi konceptualnemu nacrtovanju. Logi¢ni model temelji na specifikah izbrane vrste
logi¢nega modela (npr. mrezni, relacijski, objektni), vendar je neodvisen od specifi¢nih znacilnosti
posameznega SUPB (npr. relacijske baze ORACLE) in drugih tehni¢nih karakteristik racunalniskega
sistema. V poglavju obravnavamo logicno nacrtovanje relacijskega podatkovnega modela.

Podatkovna baza, ki temelji na relacijskem modelu, je predstavljena z mnozico relacij, kjer je vsaka
relacija tabela z vrsticami in stolpci. Prehod iz konceptualnega v logi¢ni model je navadno
avtomatiziran s strani CASE orodij. Nacelno obstaja tudi metodologija nacrtovanja direktno logi¢ne
podatkovne baze, vendar je zelo priporocljivo zaceti z nacrtovanjem na konceptualnem nivoju.

5.2.1 Transformacija konceptualnega modela v relacijski model

Slika 20 prikazuje, kako se pri prehodu iz konceptualnega na logi¢ni nivo transformirajo posamezni
gradniki konceptualnega modela. Sam konceptualni model se v primeru izbire relacijskega modela
sedaj imenuje relacijski model. Namesto o entitetnih tipih, govorimo o relacijah ali kar tabelah
podatkovne baze. Vsako relacijo oz. tabelo sestavljajo atributi, ki jih v tabeli imenujemo stolpci.
Namesto o enoliénem identifikatorju, govorimo o primarnem kljuéu relacije oz. tabele. Vse
povezave konceptualnega modela s Stevnostjo ena proti mnogo pomenijo kreiranje tujega kljuca v
eni izmed povezanih tabel. V primeru povezav s Stevnostjo mnogo proti mnogo pa se kreira vmesna
tabela.

Slika 20: Transformacije pri prehodu s konceptualnega na relacijski logi¢ni model

ANALIZA NACRTOVANJE

Relacijski model

Entitetni tip Relacija / Tabela

Atribut Atribut / Stolpec

Enoli¢ni identifikator Primarni kljuc
Povezava 1:n Tuji kljuc

Povezava m:n Vmesna tabela

Relacijo si lahko predstavljamo kot dvodimenzionalno tabelo s stolpci in vrsticami (velja za logi¢no
strukturo podatkovne baze in ne za fizicno). Atribut je poimenovani stolpec relacije. Domena je
mnoZica dovoljenih vrednosti enega ali vec atributov, ki so vkljuceni v to domeno.

51

Lastnosti relacije:

» Ime relacije je enoli¢no. V relacijski shemi podatkovne baze ni dveh relacij z enakim imenom.
» Vsaka celica tabele, ki predstavlja relacijo, vsebuje natancno eno atomarno vrednost.
P Vsak atribut relacije ima enoli¢no ime. V isti relaciji ni dveh atributov, ki bi imela isto ime.
» Vrednosti nekega atributa so vse iz iste domene.
P Vsaka n-terica relacije je enoli¢na = v relaciji ni dveh enakih n-teric.
» Vrstnired atributov v relaciji je nepomemben.
» Vrstnired n-teric v relaciji je nepomemben.
Slika 21: Primer preslikave razmerja Stevnosti ena proti mnogo
Izpitni rok Predmet
ID roka INTEGER <pk> ID predmeta INTEGER <pk>
ID_predmeta INTEGER <fk> [Naziv VARCHAR2(15)
Datum in ura izpita DATE Kreditne tocke INTEGER
Stevilo prijavijenih INTEGER Semester VARCHAR2(10)

Slika 21 prikazuje izsek preslikave konceptualnega modela s slike (Slika 16) in sicer je bila povezava
»je razpisan« med PREDMETOM in IZPITNIM ROKOM Sstevnosti ena proti mnogo. Dejstvo, da je
izpitni rok razpisan za natanko dolocen predmet, zabeleZimo s pomocjo tujega kljuc¢a ID_predmeta
(oznaka <fk> pomeni »forigen key«) v tabeli IZPITNI ROK, ki se pri preslikavi na logi¢ni nivo generira
v tej tabeli. Atributi, ki so tvorili primarni identifikator na konceptualnem nivoju, sedaj postanejo
primarni kljuéi in so oznaceni z oznako <pk>, ki pomeni »primary key«. TakSna sta atributa
ID_predmeta v tabeli PREDMET in ID_roka v tabeli IZPITNI ROK.

Slika 22: Primer preslikave razmerja Stevnosti mnogo proti mnogo
je nosilec

ID_delavca INTEGER <pkfki>
ID predmeta INTEGER <pkfk2>

IR

Predmet Pedagoski delavec
ID predmeta INTEGER <pk> ID_delavca INTEGER <pk>
Naziv VARCHAR2(15) Ime VARCHAR2(15)
Kreditne tocke INTEGER Priimek VARCHAR2(15)
Semester VARCHAR2(10) E-postni naslov VARCHAR2(15)
Geslo VARCHAR2(10)

Slika 22 prikazuje izsek preslikave konceptualnega modela s slike (Slika 16) in sicer je bila povezava
»je nosilec« med PREDMETOM in PEDAGOSKIM DELAVCEM $tevnosti mnogo proti mnogo. Zato je v
skladu s pravili za preslikave, predstavljenimi s sliko (Slika 20), nastala vmesna tabela za imenom JE
NOSILEC. Tabela ima dva tuja kljuc¢a ID_delavca (ki je primarni klju¢ tabele PEDAGOSKI DELAVEC) in
ID_predmeta (ki je primarni klju¢ tabele PREDMET). Tuja kljuca sta oznacena z oznako <fk>, ki
pomeni »foreign key«. S tem povezuje obe tabeli med seboj. Tuja klju¢a ID_delavca in ID_predmeta
pa skupaj tvorita primarni klju¢ novo nastale tabele JE NOSILEC. Atributi, ki tvorijo primarni klju¢, so
oznaceni z oznako <pk>, ki pomeni »primary key«.

52

Slika 23: Primer logi¢nega modela visoke Sole

o Prijava Student
1zpiint rok ID prijave INTEGER <pk> Vpi Stevilka INTEGER <pk>
isna Stevi

1D oka UA=EIeR: Sde g Vpisna Stevilka INTEGER <fko> | m?e VARCHAR2(15) S

D prednets o et = Dom TEGER <t Primek VARGHARZ(9)

Stevilo prijavijenih INTEGER ID_izpita INTEGER <fi3> DI REfleRE) IR
Datum prijave DATE Naslov VARCHAR2(30)
Datum odjave DATE Telefon VARCHAR2(15)

k E-postni naslov VARCHAR2(15)
|
Izpit
ID_izpita INTEGER <pk>
Vpisna Stevilka INTEGER <fk1>
ID_delavca INTEGER <fk3>
ID_roka INTEGER <fk2>
ID_prijave INTEGER <fkd>
Zap_S§t_polaganja INTEGER
Ocena NUMBER
Datum vpisa ocene DATE
Pedagoski delavec
Predmet
ID_predmeta INTEGER <ple Je nosilec -delaves U\I,IRECGH%QGS) e
Kreditne tocke INTEGER | ID predmeta INTEGER <pkfk2> E—poétni naslov VARCHAR2(15)

Slika 23 prikazuje logi¢ni podatkovni model visoke Sole, ki je nastal z avtomatsko preslikavo
konceptualnega modela s slike (Slika 16) z uporabo CASE orodja. Pri preslikavi je bil izbran relacijski
SUPB Oracle 10g. Tukaj velja opozoriti, da CASE orodja pogosto popolnoma ne sledijo teoreti¢ni
delitvi na konceptualni, logicni in fizicni model. Tako gre v primeru modela s slike teoreti¢no Ze za
mesanico logicnega in fizicnega modela, saj je potrebno pred transformacijo izbrati konkreten SUPB
(v nasem primeru Oracle 10g) in ne le vrsto modela, relacijski model. lzdelavo pravega, od SUPB
neodvisnega logi¢nega modela, pa orodje ne omogoca.

5.2.2 Omejitve nad podatkovno bazo

Za celovitost ter skladnost podatkov v podatkovni bazi skrbimo s pomocjo omejitev (ang.
constraints). Omejitve v sploSnhem zagotavljajo smiselno vsebino podatkov — njihovo integriteto.
Poznamo vec vrst omejitev (Connolly in Begg, 2010, str. 452-453):

» Obvezni podatki (ang. required data): za dolocene atribute predpiSemo, da ne morejo biti brez
vrednosti (NOT NULL). Brez vrednosti nikoli ne morejo biti atributi, ki so del kljuca. Tudi za
katerikoli drug atribut lahko predpiSemo, da ne sme biti Null.

» Omejitve domene (ang. domain constraints): povedo kakSne vrednosti so pri posameznem
atributu dovoljene. To pomeni, da v PB ne bo mozZno vnesti vrednosti izven zaloge vrednosti
domene.

» Stevnost (ang. multiplicity): predstavlja $tevilo entitet entitetnega tipa, ki so v razmerju z
entitetami drugega tipa, glede na pomen razmerja. Tako omejitev Stevnosti (Slika 23) med tipom
IZPITNI ROK in PREDMET doloca, da se izpitni rok razpiSe za natanko en predmet (v tipu IZPITNI
ROK imamo tuj klju¢ ID_predmeta, ki pove, za kateri predmet je posamezen rok razpisan).

» Pravila za celovitost podatkov (ang. integrity constraints) delimo v dve skupini:

53

» Celovitost entitet (ang. entity integrity): v osnovni relaciji ne sme biti noben atribut, ki
je del primarnega kljuca, enak Null (brez vrednosti) (Slika 24).

» Celovitost povezav (ang. referential integrity): Ce v relaciji obstajajo tuji kljuci, potem
morajo njihove vrednosti ustrezati tistim, ki so v obliki primarnega klju¢a zapisane v eni
izmed n-teric neke druge ali iste relacije (Slika 24) ali pa mora biti tuji klju¢ v celoti enak
Null.

» Splosne omejitve (ang. general constraints): dodatna pravila, ki jih doloci uporabnik ali skrbnik
podatkovne baze, ki definirajo ali omejujejo nek vidik podrocja, za katerega je narejena
podatkovna baza.

Slika 24: Primeri integritetnih omejitev
Primarni klju¢ 2 ne sme biti NULL

Obveznost podatka Id_rok

Prijava Student |
| W—

ID_prijava INTEGERS <pk= not null > Vpisna Stevilka INTEGER < k> not null _

1d_rok INTEGE Ime VARCHAR2(15)

Vpisna Stevilka INTEGER <fi@> notnull [—® priimek VARCHAR2(15) null

Id_izpit INTEGER <fk3= null Datum rojsiva DATE null

Datum prijave DATE null Nasiov VARCHAR2(30) null

Datum odjave DATE null Telefon VARCHAR2(15) null
E-poitni naslov VARCHAR2(15) null

Omejitev povezave

Slika 24 prikazuje primere integritetnih omejitev in sicer omejitev primarnega kljuc¢a na atributu ID-
prijava, omejitev tujega kljuca na atributu Vpisna stevilka v tipu PRIJAVA in obveznost podatkov (pri
atributu ID_prijava tipa PRIJAVA in atributu Vpisna $tevilka tipa STUDENT, ki predstavljata primarna
kljuca ter pri ID_rok in Vpisna Stevilka v tipu PRIJAVA, ki predstavljata tuja kljuca).

5.2.3 Logicno nacrtovanje podatkovne baze na primeru picerije

Zelimo izdelati na¢rt podatkovne baze, ki bo omogocal belezenje poslovanja picerije. Hraniti
Zelimo podatke o strankah in zaposlenih v piceriji. Nadalje potrebujemo podatke o vrstah picin
vseh njihovih sestavinah. ZabelezZiti si Zelimo vsa narocila. Za vsako narocilo Zelimo zabeleziti
zaposlenega, ki narocilo sprejel in tistega, ki je narocilo dostavil. Za vsako narocilo je potrebno
zabelezZiti tudi, katere vse pice so bile narocene in v kak$nih koli¢inah. Najprej izdelamo
konceptualni podatkovni model, ko prikazuje slika (Slika 25).

54

Slika 25: Konceptualni model picerije

POSTA

Kraj

Postna teviles =pi= Number (4
Variable characters (20) <M=

=M=

Frimami kljuf <pi=

STATUS

Sifia stetuss <pi>
Opis statusa

Integer =hi=

Variable characters (200)

Frimarni kju <pi=

v rsju]

NASLOV

Ulics

o= <pi> Variable characters (20} =M=
Hiina Stevilks <pi> Variable characters (5] =M=

Frimarni kjué <pi>

STRANKA

Je Student? Boolean

Telefonska Stevilka

OSEBA

dostava na Sifra osebe <pi> Integer =Wt
Ime Variable characters (20) <NE>
Priimek Varisble characters 20) <hi>

Varizble characters (11) <M=

Primarni Kjué <pi>

Spedializadija Igsnslslizsdja

nafodi

nadrejenost

vsebuje

SESTAVINE

Sifis sestavine <pi> Integer

Opis

<M=
Variable characters (200}

Frimarni kljué =pi=

j& nadrejen
NAROGILO sprejme ZAFOSLEN
Sifra narcdila <pi> Integer <N Davéna itevilka Variable characters 8) <M=
Datum in &as narodila Date & Time <\ dostavi Delovno mests Varisble characters 40} <Mz | =0——
Popust Number Brute placa Money <M je podrejen
Primarni kljué <pi=
sestavlja
POSTAVEA NAROCILA veligza | VRSTA PICE
Koliging Integer <M= E " |Gift= pice Zpi Integer e
Maziv pice Variable characters (40) <M=
Velikost Variable characters (10} <M=
Cena Mumber <M=
Frimarni kljué =pi=

Zatem konceptualni model preslikamo v logi¢ni model. Pri tem uporabimo pravila za preslikave,
podana na sliki (Slika 20). Pazimo na:

e preslikavo razmerja entitetnega tipa ZAPOSLEN samega s seboj. To razmerje modelira
podrejenost/nadrejenost zaposlenih.
e na dvojno povezavo med tipoma ZAPOSLEN in NAROCILO. Z razmerjem »sprejme«
modeliramo, kdo je narocilo sprejel, z razmerjem »dostavi«, pa kateri zaposleni narocilo
dostavi.
e entitetna tipa NASLOV in POSTAVKA_ NAROCILA sta modelirana kot Sibka entitetna tipa.
e povezave Stevnosti m:n med tipoma NASLOV in OSEBA (oseba ima lahko ve¢ naslovov, na
istem naslovu je lahko vec¢ oseb) ter VRSTA_PICE in SESTAVINE (pica ima vec sestavin, ista
vrsta sestavine npr. Sunka se lahko uporabi pri izdelavi vec razli¢nih vrst pic).

Ob upostevanju vseh pravil transformacije konceptualnega v logi¢ni nivo dobimo relacijski logic¢ni
podatkovni model picerije, z naslednjimi relacijami. Pri tem so primarni klju¢i posameznih relacij
podcrtani, z oznako # pa so oznaceni tuji kljuci.

Relacijske sheme modela picerije

POSTA (Postna_Stevilka, Kraj)

NASLOV(Ulica, Hisna Stevilka, #Postna Stevilka)

OSEBA (Sifra_osebe, Ime, Priimek, Telefonska_stevilka)
DOSTAVA (#Ulica,#Hi$na 3tevilka, #Postna $tevilkat, #Sifra osebe) // nova tabela med NASLOV in

OSEBA zaradi

povezave m:n

STRANKA (#Sifra_osebe, Student)

55

STATUS (Sifra_statusa, Opis)

ZAPOSLEN (Davéna_stevilka, Delovno_mesto, Bruto_placa, #Sifra_osebe, #Sifra_3efa)

NAROCILO (Sifra_naroéila, Datum_in_¢€as_narocila, Popust, #Sifra_stranke, #Sifra_statusa,
#Sifra_sprejme, #Sifra_dostavi)

POSTAVKA_NAROCILA (Koli¢ina, #Sifra_narocila, #Sifra_pice)

VRSTA_PICE (Sifra_pice, Naziv_pice, Velikost, Cena)

SESTAVINE (Sifra_sestavine, Opis)

VSEBUIJE (#Sifra_pice, #Sifra_sestavine)

Vprasanja za ponavljanje

Kaj je logi¢no nacrtovanje in kaj je njegov rezultat?

Kaj je pri prehodu iz konceptualnega na logi¢ni nivo potrebno dolociti?

Ali je logi¢ni model odvisen ali neodvisen od specifik konkretnega SUPB?

Kako se pri prehodu iz konceptualnega na logi¢ni nivo transformirajo: entitetni tipi, atributi,
enoli¢ni identifikator, povezave 1:n, povezave m:n?

Kaj zagotavljajo omejitve nad podatkovno bazo?

Katere vrste omejitev poznas?

Kateri atributi morajo obvezno imeti integritetno omejitev NOT NULL in kaj ta pomeni?
Katerim atributom Se dodatno lahko pripiSemo integritetno omejitev NOT NULL?

Kaj pomeni celovitost povezav oz. referencna integriteta povezav?

10. Kaj zagotavlja omejitev domene?

P wnNe

©® N v

Naloge
5.2.1 Konceptualni model iz naloge 4.1 (domena smucarskih skokov) preslikajte v logi¢ni model.

e Zapisite relacijske sheme.
e Model preslikajte s pomocjo orodja Oracle SQL Developer Data Modeler.

5.2.2 Konceptualni model iz naloge 4.2 (domena prodajalna avtomobilov) preslikajte v logicni
model.

e Zapisite relacijske sheme.
e Model preslikajte s pomocjo orodja Oracle SQL Developer Data Modeler.

56

5.2.3 Podani konceptualni model videoteke preslikajte v logi¢ni model.

e Zapisite relacijske sheme. Pazite pri entitetnih tipih FILM ZA IZPOSOJO in IZPOSOJA, ki sta
modelirana kot Sibka entitetna tipa. PodCrtajte primarne kljuce, z oznako # pa oznacite
tuje kljuce. Pazite na dvojno povezavo med entitetnima tipoma PODRUZNICA in OSEBJE.

e Model preslikajte tudi s pomocjo orodja Oracle SQL Developer Data Modeler.

Slika 26: Konceptualni model videoteke

ZVRST
Sitrs zwrsti =pi> Integer <l
Naziv zvrsti Variable characters (20) <>

Frimami klju <pi=

ima Zanr

FILM

Katalodka Stevilka <pi> |nteger =M=

Naslov Variable characters (40] <M>

Cena na dan Maney <M=

Ime glavnega igralcs Varisble charscters (40) MESTO

Ime re?iserja Vatiable characters (40} Poltna itevilka <pi> Number (£) e
P —— Krsj Varisble characters (20) <M=

Frimarni kjug <pi=

vezan ne
j& v mestu

FILM ZA IZPOSCJC izposojs PODRUZNICA zaposljuje CSEBJE

- =t = ' = =

Stevilks filma zpi> Integer =M= T "lio podruznics <pi> Integer =Nt ID osebia <pi= Integer =M=

Status Boolean <M= Ulica Variable characters (20) <h>= menediira Ime Variable characters [20) <\=

Primarni kljug <pi> Telefonsha Stevilka Number (11} o———————t|Pazicijs Variable characters [20) <hf>
Primarni kjué <pi> Fzer LIy L

Frimami kljué <pi=
veljs za se registrira
IZPOSOJA zahteva) CLAN

Stevilka izposoie =pir Integer =Wt x Clansim Stevilka <pi> Variable characters (10) =M=

Datum izposoje Date =hE Ime Varisble characters (20) <\

Datum vmitve Date Friimek Varisble characters (20) <\

Skupna cena Money Datum registracije Dste <h=

Frimami kljut <pi= Frimami kljut <pi=

5.3 Normalizacija

Grad in Jakli¢ (1996, str. 101) definirata normalizacijo kot analizo funkcionalnih odvisnosti med
svojstvi (atributi, podatkovnimi elementi). Gre za postopek sestavljen iz ve¢ korakov, v katerem se
kompleksen pogled uporabnikov prevede v mnozico preprostih in stabilnih podatkovnih struktur.

Rezultat zacetne analize podatkovnih potreb je mnozica nenormaliziranih relacij, za katero je
znacilna nekonsistentnost in podvajanje podatkov. Vse te pomanjkljivosti je potrebno odpraviti pred
kreiranjem fizicne podatkovne baze, saj v nasprotnem primeru ni mogoce pri¢akovati optimalnega
delovanja na podatkovni bazi temeljeCega informacijskega sistema. Osnovni cilj nacrtovanja
relacijske podatkovne baze je grupirati atribute v relacije tako, da bo ¢im manj redundance med
podatki, saj relacije, ki vsebujejo odvecne podatke, lahko povzrocajo azurne anomalije. Poznamo
vec vrst azurnih anomalij:

» anomalije pri dodajanju n-teric v relacijo,

» anomalije pri brisanju n-teric iz relacije in

» anomalije pri spreminjanju n-teric.

57

Normalizacija je postopek pregleda in preoblikovanja relacij oz. tabel v obliko, pri kateri bo
podvajanja podatkov ¢im manj in ne bo prihajalo do azurnih anomalij (Rob in Coronel, 2004,str.
184).

Potencialne koristi pravilnega nacrtovanja so:

» Spremembe podatkov v podatkovni bazi dosezemo z minimalnim Stevilom operacij = vedja
ucinkovitost; manj moznosti za podatkovne nekonsistentnosti.

» Manjse potrebe po diskovnih kapacitetah za shranjevanje osnovnih relacij = manjsi stroski.

Relacija se lahko nahaja v eni izmed naslednjih normalnih oblik (Grad in Jakli¢, 1996, str.

101-113, Finkelstein, 1992, str. 61-73, Mohori¢, 1992, str. 25-46, Rob in Coronel, 2004,str. 184-221):

e V prvi normalni obliki, ¢e ne vsebuje ponavljajoCih se vrednosti podatkov (relacija je vtem
primeru predstavljena z dvodimenzionalno tabelo).

e V drugi normalni obliki, ¢e je v prvi in ne vsebuje nobene delne odvisnosti med glavnim
klju¢em in atributi, ki niso del primarnega kljuca.

e V tretji normalni obliki, ¢e je v drugi in ne vsebuje tranzitivnih odvisnosti med atributi, ki
niso del primarnega kljuca.

e V Cetrti normalni obliki, Ce je v tretji normalni obliki in njeni atributi niso odvisni zgolj od
primarnega kljuca, temvec tudi od njegovih vrednosti. Z drugimi besedami: iz relacije se
odpravijo vsi atributi, ki v njej nastopajo zgolj pogojno.

e V peti normalni obliki, Ce je v Cetrti in ne vsebuje povratnih odvisnosti. Tovrstni problemi se
reSujejo z vpeljavo posebne relacije z nazivom "struktura".

Cilj postopka normalizacije je vzpostavitev takega relacijskega podatkovnega modela, kjer bodo
vse relacije vsaj v tretji normalni obliki. V nadaljevanju na primerih obravnavamo prve Stiri
normalne oblike. Visja normalna oblika pomeni boljso strukturiranost podatkov v podatkovni bazi
in njihovo manjSo redundanco. Po drugi strani pa to pomeni, da je potrebno pri dostopu do
podatkov dostopati do vecjega Stevila tabel, ki jih je potrebno povezati z operacijo stika, kar
posledicno pomeni daljSe odzivne case na poizvedbe uporabnikov. Zato se na racun visje
ucCinkovitosti delovanja podatkovne baze v€asih odreCemo visjim normalnim oblikam, npr. 3NO in
4NO . V poglavju 5.4.7 zato spoznamo tudi postopek denormalizacije, ki pomeni preoblikovanje
relacij iz viSje normalne oblike v niZjo (npr. relacije, ki so v 3NO preoblikujemo v 2NO).

5.3.1 Vrste azurnih anomalij

Do azurnih anomalij lahko pride pri dodajanju novih vrstic tabelo, pri brisanju vrstic iz tabele in pri
spreminjanju podatkov v primerih, ko tabela ni normalizirana. Oglejmo si primere azurnih anomalij
na primeru domene picerije. Imejmo nenormalizirano tabelo Pica, ki hrane podatke o posamezni
vrsti pice in njenih sestavinah.

Pica (sifra_pice, naziv_pice, velikost_pice, cena_pice, sifra_sestavine, opis_sestavine.

Vidimo, da se podatki o nazivu pice, Sifrah sestavin in opis sestavin ponavlja. Oglejmo si, do kaksnih
tezav prihaja pri aZuriranju podatkov takSne nenormalizirane tabele.

58

Tabela 1: Nenormalizirana tabela Pica

Sifra_ Naziv_ | Velikost_ Cena_ Sifra_ Opis_
pice plce pice pice sestavine | sestavine

VraZJa velika T 12 tabasko |
15 Vrazja velika 8 € 37 feferoni
17 Vrazja majhna 6 € 15 Sunka
18 Morska majhna 7€ 3 tuna
19 Morska velika 9€ 12 tabasko

5.3.1.1 Dodajanje zapisov

Oglejmo si moZne primere teZav v primeru, da Zelimo v tabelo dodati novo pico. Recimo, da manjka
vrazja pica srednje velikosti. Njena cena je 7 €. Sestavine te pice so: Sunka, tabasko in feferoni, kot
vsake vraZje pice. Zato, da bi to pico dodali, je potrebno dodati tri nove vrstice, ¢eprav so naziv pice,
in vse sestavine Ze v podatkovni bazi. Pri tem je seveda potrebno paziti, da se vneseni podatki
skladajo s podatki v Ze obstojecih vrsticah tabele, saj v nasprotnem primeru pride do
nekonsistentnosti podatkovne baze. Primer ustrezno aZurirane tabele Pica prikazuje Tabela 2.
Vidimo tudi, da se Stevilo podatkov v podatkovni bazi iz 30 poveca na 48. Vpisali smo namre¢ 18
novih podatkov, od katerih se jih velika vecina ponavlja.

Tabela 2: Azurirana tabela Pica

Sifra_ Naziv_ | Velikost_ Cena_ Sifra_ Opis_
pice pice pice pice sestavine | sestavine

Vrazja velika tabasko
15 Vrazja velika 8 € 37 feferoni
17 Vrazja majhna 6 € 15 Sunka
18 Morska majhna 7€ 3 tuna
19 Morska velika 9€ 12 Tabasko
16 Vrazja srednja 7€ 12 tabasko
16 Vrazja srednja 7€ 37 feferoni
16 Vrazja srednja 7€ 15 Sunka

Relacijo Pica normaliziramo tako, da relacijo Pica razbijemo na vec relacij. Ker se ista sestavina lahko
pojavi na razli¢nih picah, najprej uvedemo tabelo Sestavina, ki predstavlja Sifrant vseh sestavin, ki
jih picerija uporablja. V tej tabeli je vsaka sestavina zapisana natanko enkrat, kar je bistvena
prednost pred prejsnjim primerom, ko je bila zapisana tolikokrat, na kolikor picah je nastopala. Ker
ista sestavina lahko nastopa na vec razli¢nih vrstah pic (npr. tabasko je sestavina vraZje in morske
pice) ter ima vsaka vrsta pice tudi vec€ razli¢nih sestavin (npr. vraZjo pico sestavljajo Sunka, tabasko,
feferoni) uvedemo vmesno tabelo Sestavina_na_pici. V osnovni relaciji Pica pa ostanejo preostali
atributi.

59

Dobimo tri relacije:
Sestavina (sifra_sestavine, opis_sestavine)
Sestavina_na_pici (#sifra_pice, #sifra_sestavine)
Pica (sifra_pice, naziv_pice, velikost_pice, cena_pice)

Tabela 3: Podatki picerije iz tabele 1 v normalizirani bazi

Sifra_ Opis_ Sifra_ Naziv_ Velikost_ Cena_
sestavine | sestavine pice pice pice p|ce

tabasko Vrazja velika

37 feferoni 17 Vrazja majhna 6 €
15 Sunka 18 Morska majhna 7€
3 tuna 19 Morska velika 9€

15 12

15 37

17 15

18 3

19 12

Sedaj v normalizirano bazo dodamo vrazjo pico srednje velikosti (sifra_pice=16), katere cena je 7 €
in ima sestavine tabasko, feferoni, Sunka. V tem primeru dodajamo v tabelo Pica in sicer dodamo le
eno novo vrstico: novo Sifro, naziv, velikost in ceno. Sestavine vrazje pice so Ze vnesene in jih ni
potrebno ponovno vnasati. Vnesemo Se povezave med siframi sestavin in sifro pice v tabelo
Sestavina_na_pici. Potrebno je dodati toliko vrstic, koliko sestavin ima pica (v nasem primeru torej
3). Vidimo da smo sedaj vpisali 10 novih podatkov, v primerjavi s predhodnim primerom, kjer jih
je bilo 18. Tako vidimo, da je normalizacija pomembna tudi z vidika manjse porabe prostora za
hranjenje.

60

Tabela 4: Dodajanje vraZje srednje pice v normalizirano bazo

Sifra_ Opis_ Sifra_ Naziv_ Velikost_ Cena_
sestavine | sestavine pice pice pice pice

tabasko Vrazja velika
37 feferoni 17 Vrazja majhna 6 €
15 Sunka 18 Morska majhna 7€
3 tuna 19 Morska velika 9€
o H 16 Vrazja srednja 7€ ‘l

15

15 37

17 15

18 3

19 12

16 12

16 37

16 15

5.3.1.2 Brisanje zapisov

V primeru, da iz zaCetne nenormalizirane tabele Pica zbriSemo majhno vrazjo pico izgubimo podatke
o sestavini 15, Sunki, saj ta sestavina nastopa samo pri tej pici. Ko bomo vnasali novo pico s to
sestavino, bo sestavino potrebno ponovno vnesti, kar z vidika ucinkovitosti uporabnika ni dobro.

Tabela 5: AZzurne anomalije pri brisanju podatkov tabele Pica

Sifra_ Naziv_ Velikost_ Cena_ Sifra_ Opis_
pice pice pice plce sestavine | sestavine

Vrazja velika tabasko
15 Vrazja velika 8 € 37 feferoni
17 Vrazja majhna 6 € || 15 Sunka ||
18 Morska majhna 7€ 3 tuna
19 Morska velika 9€ 12 tabasko

V primeru, da iz zacetne normalizirane tabele Pica zbriSemo majhno vraZjo pico, podatki o sestavini
Sunka v tabeli Sestavina ostane. BriSemo Se vrstice v tabeli Sestavina_na_pici, in sicer sestavine male
vrazje pice (ta ima v tabeli le sestavino Sunka s Sifro 15).

61

Tabela 6: Brisanje male vrazje pice iz normalizirane baze

Sifra_ Opis_ Sifra_ Naziv_ Velikost_ Cena_
sestavine | sestavine pice pice pice pice

tabasko Vrazja velika
37 feferoni ‘ 17 Vrazja majhna (ﬂ
15 Sunka 18 Morska majhna 7€
3 tuna 19 Morska velika 9€

15 12
15 37

|‘ 17 15 ‘I
19 12

5.3.1.3 Spreminjanje zapisov

Ce Zelimo v nenormalizirani tabeli spremeniti opis sestavine, npr. tabasko v tabasco, moramo to
storiti tolikokrat kot imamo razli¢nih pic s to sestavino v tabeli Pica (v konkretnem primeru moramo
narediti dve spremembi). V nasprotnem primeru podatkovna baza postane nekonsistentna.

Tabela 7: Azurne anomalije pri spreminjanju podatkov tabele Pica

Sifra_ Naziv_ Velikost_ Cena_
pice pice pice pice

Vrazja velika
15 Vrazja velika 8 €
17 Vrazja majhna 6 €
18 Morska majhna 7€
19 Morska velika 9€

Ce Zelimo isto spremembo narediti v normalizirani bazi, je potrebno popraviti natanko en podatek

v tabeli Sestavina.

62

sestavine

Opis_

sestavine

feferoni

sunka

tuna

Tabela 8: Spreminjanje opisa sestavine v normalizirani bazi

Sifra_ Opis_
sestavine | sestavine

2
37 eferoni
15 Sunka

3 tuna

5.3.2 Prva normalna oblika

Pravilo prve normalne oblike zahteva identifikacijo in odstranitev ponavljajocih skupin. Klju¢ tako
dobljene relacije sestavlja klju¢ osnovne relacije (katere del je bila prvotno ponavljajoca skupina) in
klju¢ ponavljajoce skupine. Poglejmo primer nenormalizirane relacije Voznik. Relacijo Voznik bomo
normalizirali do 3. normalne oblike.

Podana je nenormalizirana relacija:

Prekrsek (Ime, Priimek, St_dovoljenja, Posta, Kraj,(Datum_in_ura, Znesek, St_tock))

Relacija Voznik hrani podatke o prekrskih voznikov. O vsakem vozniku Zelimo hraniti njegove osebne
podatke, o prekrsku pa datum in uro prekrska, znesek kazni in Stevilo kazenskih tock. Ker vsak voznik
lahko naredi vec prekrskov, moramo imeti moZnosti za vsakega zabelezZiti vse njegove prekrske, kar
je v relaciji podano s ponavljajoco skupino atributov o prekrsku znotraj dodatnih oklepajev.

Da je relacija v prvi normalni obliki morajo biti izpolnjeni naslednji pogoji:
» Nima ponavljajocih skupin (atributi niso vecvrednostni).
» Ima opredeljene funkcionalne odvisnosti in primarni kljuc.

Koraki normalizacije v 1. NO:
1. Odpravimo ponavljajoce skupine.
2. Dolo¢imo funkcionalne odvisnosti.
3. Doloc¢imo primarni kljuc.

1. Odpravimo ponavljajoce skupine:
Prekrsek (Ime, Priimek, St_dovoljenja, Posta, Kraj, Datum in _ura, Znesek, St_tock)

2. Doloc¢imo funkcionalne odvisnosti:
St_dovoljenja->(Ime, Priimek, Posta, Kraj)
Posta-> Kraj
(St_dovoljenja, Datum_in_ura)->(Znesek, St_tock)

3. Doloc¢imo primarni kljuc:
St_dovoljenja, Datum _in_ura

63

Imamo relacijo v 1. NO z dolo¢enim primarnim kljucem:
Prekrsek (Ime, Priimek, St_dovoljenja, Posta, Kraj, Datum in _ura, Znesek, St_tock)

5.3.3 Druga normalna oblika

Da je relacija v drugi normalni obliki morajo biti izpolnjeni naslednji pogoiji:
» Relacijajev1. NO.
» Ne vsebuje parcialnih odvisnosti (odvisnosti le od dela primarnega kljuca). To pomeni, da
noben atribut, ki ni del klju¢a, ni funkcionalno odvisen le od dela primarnega klju¢a, temvec
od celotnega kljuca.

Ce ima relacija n atributov in je primarni klju¢ sestavljen iz 1, n-1 ali n atributov, je relacija v 2.NO.

1. Atribute, le delno odvisne od primarnega klju¢a, prenesemo v novo relacijo. Na
podlagi funk. odvisnosti St_dovoljenja — (Ime, Priimek, Posta, Kraj) kreiramo
novo relacijo Voznik.

Voznik (St_dovoljenja, Ime, Priimek, Posta, Kraj)

2. Vrelaciji Prekrsek tako ostanejo le atributi, odvisni od celotnega kljuca:
Prekrsek (#St_dovoljenja, Datum in _ura, Znesek, St_tock)

Sedaj tako imamo dve relaciji, ki sta obe v 2. NO.

5.3.4 Tretja normalna oblika

Da je relacija v tretji normalni obliki morajo biti izpolnjeni naslednji pogoiji:
» Relacijajev2.NO.
» Ni tranzitivnih funkcionalnih odvisnosti. To pomeni, da med atributi, ki niso del primarnega
klju¢a ni funkcionalnih odvisnosti.

Ce ima relacija n atributov in je primarni klju€ sestavljen iz n-1 ali n atributov.

1. Ugotovimo, da znotraj relacije Voznik obstaja tranzitivha odvisnost med
atributoma, ki nista del primarnega kljuca. Torej upoStevamo funk. odvisnost
Posta-> Kraj in dobimo naslednji relaciji:

Voznik (St_dovoljenja, Ime, Priimek, #Posta)
Kraj (Posta, Kraj)

2. Imamo Se relacijo, ki je Ze v 3.NO, saj ne vsebuje tranzitivnih odvisnosti:
Prekrsek (#St_dovoljenja, Datum in _ura, Znesek, St_tock)

S tem je postopek normalizacije tega primera koncan. Iz zacetne relacije smo dobili
tri relacije (Voznik, Kraj, Prekrsek), ki so vse v 3. NO.

64

5.3.5 Cetrta poslovna normalna oblika

Obravnavali bomo cetrto poslovno normalno obliko. Da je relacija v ¢etrti poslovni normalni obliki,
morajo biti izpolnjeni naslednji pogoiji:

» Relacijajev 3. NO.

» Atributi so odvisni od primarnega kljuca in od vrednosti kljuca.

» Neobvezen prenesen atribut iz druge relacije, ki je v celoti odvisen od kljuca je obvezen.

Razsirimo primer hranjenja podatkov o voznikih tako, da Zelimo za poklicne voznike hraniti tudi naziv
podjetja, kjer so zaposleni, za preostale voznike pa npr. obstojece kazenske tocke.

Imejmo relacijo Voznik z naslednjimi atributi:

Voznik (St _dovoljenja, Ime, Priimek, #Posta, Podjetje, Obstojece tocke)

1. Ugotovimo, da sta atributa Podjetje in Obstojece_tocke odvisna le od kljuca in
od vrednosti, zato ju izlo¢imo v dve novi relaciji:
Poklicni_voznik (#St_dovoljenja, Podjetje)
Zasebni_voznik (#St_dovoljenja, Obstojece_tocke)

2. V zacetni relaciji nam tako ostanejo naslednji atributi:
Voznik (St_dovoljenja, Ime, Priimek, #Posta)

Navedene tri relacije (Voznik, Poklicni_voznik, Zasebni_voznik) so tako v 4.NO.

eves

normalne oblike nikoli ne krSimo. Visjim normalnim oblikam se vcéasih odre¢emo na racun
doseganja boljse ucinkovitosti dela s podatkovno bazo.

5.3.6 Normalizacija relacije z uporabo podatkov nenormalizirane tabele

Tabela prikazuje, kdaj so pacienti naroceni pri zobozdravniku. Pacient je naro¢en na dolo¢en dan ob
dolo¢enem &asu pri zobozdravniku, ki se nahaja v dolo¢enem oddelku. Stevilka zaposlenega (St. Zap)
enoli¢no doloc¢a podatke o zobozdravniku, $tevilka pacienta (St. Pac.) pa podatke o pacientih (ime,
priimek). Vsak dan je zobozdravnik dodeljen enemu oddelku za cel dan.

65

Tabela 9: Zapisi v nenormalizirani relaciji

St. Zap. | Ime zobozdravnika | St. Pac. | Ime in priimek pac. | Datum obiska | Cas obiska | Stevilka oddelka
S1011 | Tone Kovac P100 Janez Novak 12.3.2010 10.00 S15
S1011 | Tone Kovac P105 Ivan Horvat 12.3.2010 12.00 S15
S1024 | Helena Hribar P108 Tomaz Senica 12.3.2010 10.00 S10
S1024 | Helena Hribar P108 Tomaz Senica 14.3.2010 14.00 S10
S1032 | Robert Plevnik P105 Ivan Horvat 14.3.2010 16.30 S15
S$1032 | Robert Plevnik P110 Matej Lorgar 15.3.2010 18.00 S13

Na podlagi opisa domene in podatkov prikazanih v tabeli:

v

v

Identificiraj funkcionalne odvisnosti.

Identificiraj primarne kljuce relacij in tuje kljuce.

Izvedi postopek normalizacije v 3NO.

Skusaj podati tudi primere anomalij pri vstavljanju, brisanju in posodabljanju podatkov.

Funkcionalne odvisnosti:

fol: (St. Zap., Datum obiska, Cas obiska)-> St. Pac., Ime in priimek pac.

fo2: St. Zap.-> Ime zobozdravnika
fo3: St. Pac.-> Ime in priimek pac., Stevilka oddelka
fod: St. Zap., Datum obiska)-> Stevilka oddelka

fo5: (Datum obiska, Cas obiska, St. Pac)-> St.Zap, Ime zobozdravnika

Normalizirane relacije:

ObiskPriZobozdravniku (#St. Zap., Datum obiska, Cas obiska, #5t. Pac.)
Pacient (St. Pac., Ime in priimek pac.)

Zobozdravnik(St. Zap., Ime zobozdravnika)
Zaposleni_Oddelek(#3t. Zap., Datum obiska, Stevilka oddelka)

66

Vprasanja za ponavljanje

L oo NDU A WNBRE

Kaj je normalizacija?

Zakaj moramo relacije normalizirati?

Katere normalne oblike poznas?

Katerih normalnih oblik nikoli ne kr§imo?

Kdaj je relacija v prvi normalni obliki?

Kdaj je relacija v drugi normalni obliki?

Kdaj je relacija v tretji normalni obliki?

Kdaj je relacija v ¢etrti poslovni normalni obliki?

eves

Naloge

5.3.1 Dolo¢i funkcionalne odvisnosti med atributi in normaliziraj relacijo Najem do 3. NO

Podana je relacija:
Najem (St_najemnika, Ime_najemnika, (St_nepr, Naslov_nepr, Datum_z, Datum_k, Cena,
St_lastnika, Ime_lastnika))

Pomen sheme je naslednji:

Izbiramo podatke o najemanju nepremicnin. Termin zacetka (Datum_z) in prenehanja najema
(Datum_k) je natan¢no dolocen s $tevilko najemnika (St_najemnika) in $tevilko nepremicnine
(St_nepr). Stevilka najemnika pri tem enoli¢no dolo¢a ime najemnika (Ime_najemnika). Vsaka
nepremiénina ima svojo identifikacijsko 3tevilko (St_nepr), ki dolo¢a naslov nepremiénine
(Naslov_nepr) in kdo je njen lastnik (St_lastnika in Ime_lastnika) ter ceno najema (Cena). Pri
tem ima vsak lastnik svojo identifikacijsko Stevilko.

5.3.2 Dolo¢i funkcionalne odvisnosti med atributi in normaliziraj relacijo P do 3. NO

Podana je relacija:
P(SifraKaseta, SifraFilm, NaslovFilm, ReZijaFilm, DolZinaFilm, (EMSO, ImeStranka, UlicaStranka,
PostaStranka, KrajStranka, Caslzposoje))

Pomen sheme je nasledniji:

V videoteki hranijo ve¢ videokaset. Vsako kaseto vodijo pod svojo $ifro (Sifrakaseta). Na vsaki
kaseti je lahko posnet le en film, ki ga dolo¢a 3ifra (SifraFilm), seveda pa je lahko isti film (z enako
Sifro) posnet tudi na vec razli¢nih kasetah. Poleg Sifre za vsak film poznamo $e njegov naslov
(NaslovFilm), ime reziserja (ReZijaFilm) in dolzino (DolZinaFilm). Kasete si izposojajo stranke o
katerih hranimo naslednje podatke: EMSO (EMSO), ime (ImeStranka) ter naslov prebivali$¢a
(UlicaStranka, PostaStranka, KrajStranka). Ko si stranka izposodi kaseto, zabelezimo cas

67

izposoje (Caslzposoje). Seveda si lahko isti medij izposodi tudi ve¢ strank ali pa si ga ista stranka
izposodi veckrat, vendar le ob razli¢nih ¢asih izposoje.

5.3.3 Dolo¢i funkcionalne odvisnosti med atributi in normaliziraj relacijo R do 3. NO

Podana je relacija:
R(DavénaSt, Ime, Priimek, Ulica, PostnaSt, Kraj, (Sifralzdelka, Imelzdelka, SifraKategorije,
ImeKategorije, Cena, Kolicina, DatumCasNakupa)).

Pomen sheme je nasledniji:

Neka oseba (DavénaSt) ima ime in priimek ter stanuje na naslovu (Ulica) v kraju (PostnaSt,
Kraj). Oseba v spletni prodajalni kupi izdelke (Sifralzdelka) v doloéeni koli¢ini (Koli¢ina).
Zabelezimo tudi datum in ¢as nakupa (DatumCas), saj lahko ista oseba veckrat kupi isti izdelek.
Sifra izdelka dolo¢a ime izdelka (Imelzdelka), dolo¢a pa tudi njegovo ceno (Cena). Vsak izdelek
je uvrséen v doloceno kategorijo izdelkov npr. oblacila, tehni¢no blago, ki ima poleg Sifre
(SifraKategorije) tudi svoje ime (ImeKategorije).

5.4 Fizi¢no nacrtovanje

Fizicno nacrtovanje je tretji, zadnji korak pri nacrtovanju podatkovne baze. Fizicno nacrtovanje je
proces izdelave opisa implementacije podatkovne baze na zunanjem pomnilnem mediju. Obsega
opis relacij, datotecnih organizacij za relacije in indekse, integritetnih omejitev, varnostnih ukrepov
in oceno velikosti podatkovne baze (Connolly in Begg, 2010, str. 473).

Ce smo se pri logi¢nem nadrtovanju $e ukvarjali z vprasanjem KAJ potrebujemo, se pri fizicnem
osredotoCimo na vprasanje KAKO bomo podatkovno bazo implementirali. Zato so za fizi¢no
nacrtovanje potrebni ljudje s specificnimi znanji glede na izbrani SUPB (npr. Oracle 10g). Seveda pa
proces fizicnega nacrtovanja ne poteka lo¢eno od logi¢nega nacrtovanja, saj morajo biti dolocene
odlocitve, sprejete v okviru fizicnega naCrtovanja za izboljSanje ucinkovitosti delovanja podatkovne
baze, zabeleZene tudi na logicnem modelu (npr. zdruzitev dolocenih relacij).

5.4.1 Izdelava SQOL skripte

Prvi korak je pretvorba logicnega modela v jezik za ciljni SUPB. V primeru relacijskega logi¢nega
modela gre za izdelavo skripte, ki vsebuje stavke jezika SQL za kreiranje podatkovne baze (DDL stavki
za tocno dolocen SUPB). Za vsako relacijo definiramo naziv relacije, listo atributov, primarni kljuc
ter tuje kljuce in omejitve povezav. Pri tem nam je CASE orodje zopet v veliko pomo¢, saj najprej
preveri sintakti¢no pravilnost logicnega modela ter nam nato avtomatsko generira skripto (Slika 27).
Skripto potem v ciljinem SUPB poZenemo in baza se skreira. Druga manj ugodna moznost je ro¢no
kreiranje elementov podatkovne baze, bodisi preko vmesnika SUPB ali z ro¢nim poganjanjem
posameznih SQL stavkov.

Slika 27: Primer skripte v jeziku SQL za kreiranje relacijske podatkovne baze za Oracle 10g

68

/* */

J% Index: "je nosilec2_FK" ®
k- 'sfc'lll."
create index ”je nosilecZ_FK" on "je nosilecl™ (

"Id_predmet”™ ASC
e - - oA
/% Table: "Student ®
I */
create table "Student”

"wpisna Stevilka" INTEGER not null,

"Ime" VARCHARZ(15),

"Priimek" VARCHARZ (15,

"Datum rojstwva” DATE,

"Maslow" VARCHARZ(20),

"Telefon" VARCHARZ(15),

"E-poitni naslov" VARCHARZ(15),

constraint PK_STUDENT primary key ("vpisna Stevilka")
alter table "Izpit"

add constraint FK_IZPIT_IZVEDE_PEDAGOSK foreign key ("ID_delavca")
references "Pedagoski delavec” ("ID_delavca");

alter table "Izpit"
add constraint FK_IZPIT_OPRAVLIA_STUDENT foreign key ("vpisna Stevilka")
references "Student” ("vpisna stevilka");

alter table "Izpit"
add constraint "FK_IZPIT_SE MNANAS_PRIJAVA" foreign key ("ID_prijava")
references "Prijava" ("ID_prijava");

5.4.2 Datotecne organizacije

V okviru fizicnega nacrtovanja je potrebno izdelati tudi nacrt datotecne organizacije. Potrebno je
namrec izbrati optimalno datotec¢no organizacijo za shranjevanje osnovnih relacij ter razlicne vrste
indeksov za doseganje ¢im boljSe odzivnosti podatkovne baze. Nacrtovalec mora zato dobro poznati,
kaksSne datotecne strukture in organizacije SUPB podpira ter kako deluje, saj med SUPB-ji obstajajo
velike razlike. Prvi korak je tako analiza transakcij, ki se bodo v PB izvajale. Klju¢nega pomena pri
tem so tudi uporabniske zahteve v zvezi z Zeleno/pri¢akovano ucinkovitostjo transakcij.

V sploSnem poznamo naslednje datotecne organizacije (za relacije in indekse) (Connolly in Begg,
2010, str. 484-485):

Kopica (Heap),

Razprsena (Hash),

Metoda indeksiranega zaporednega dostopa (Indexed Sequential Access Method - ISAM),
Drevo B+-,

Gruca (Cluster) in Se nekatere druge.

v v v v Vv

Bralec se lahko podrobneje spozna z znacilnostmi navedenih datotecnih organizacij in indeksov,
njihovimi prednostmi in slabostmi v Connolly in Begg, 2005, dodatek C, str. 1268-1292 ali v Mohoric,
1992, str. 31-96.

69

Naceloma lahko za vsako relacijo izberemo zanjo najprimernejSo datotecno organizacijo glede na
vrste transakcij, katere se bodo nad njo izvajale. Pri tem smo v praksi Zzal omejeni, saj nekateri SUPB-
ji ne podpirajo vseh navedenih datotecnih organizacij.

5.4.3 Indeksiranje

Naslednji pomemben korak fizicnega nacrtovanja je izbira indeksov. Navadno generiramo indekse
za vse stolpce, ki predstavljajo primarne in tuje klju¢e. Namen dodatnih indeksov (tako imenovanih
sekundarnih indeksov) je povecanje ucinkovitosti dela s PB. Dodatne indekse navadno dodamo na
stolpce, po katerih bodo uporabniki pogosto iskali podatke ali tam, kjer se tabele med seboj
povezujejo, npr. kateri nastopajo v pogojih za selekcijo ali stik: ORDER BY; GROUP BY ali v drugih
operacijah, ki vklju¢ujejo sortiranje (npr. UNION ali DISTINCT). V primeru table STUDENT bi lahko
sekundarni indeks dodali npr. na stolpec Priimek, ¢e ocenimo, da bodo uporabniki po njem pogosto
iskali.

Po drugi strani pa ni primerno indeksirati atributov, ki se pogosto spreminjajo ali ki so sestavljeni iz
dolgih nizov.

Slika 28: Primer skripte v jeziku SQL za kreiranje indeksov za Oracle 10g
create unique index "Student_PK" on "Student" ("Vpisna $tevilka" ASC);

create index "Po_priimku" on "Student" ("Priimek" ASC);

Slika 28 prikazuje SQL ukaza za generiranje indeksov. Prvi SQL stavek kreira indeks po stolpcu Vpisna
Stevilka, ki predstavlja primarni klju¢ tabele STUDENT, za to mora biti indeks unikaten (tipa unique).
Drugi ukaz kreira dodatni indeks na stolpcu Priimek. V tem primeru ne gre za unikaten indeks.

5.4.4 Analiza transakcij

Da bi fizicno nacrtovanje kar najuspesneje izvedli, je potrebno analizirati transakcije, ki se bodo
izvajale nad podatkovno bazo. Pri tem nas zanima (Connolly in Begg, 2010, str. 479):
e katere transakcije se bodo izvajale zelo pogosto in zato odlocilno vplivale na hitrost delovanja
PB,
e katere transakcije so kriticne z vidika poslovanja,
e v katerih obdobjih znotraj delovnega tedna/dneva bo obremenitev PB najvecja (ang. peak
load).

Z analizo transakcij ugotovimo morebitna ozka grla pri delovanju PB. Rezultati analize predstavljajo
podlago za razlicne odlocitve, npr. za izbiro datoteCne organizacije in indeksiranja, morebitne
zdruZitve nekaterih relacij. Pogosto ne moremo analizirati vseh transakcij, zato se osredoto¢imo na
najpogostejse transakcije (pravilo 80/20). Za analizo lahko uporabimo razli¢ne tehnike, npr. matriko
transakcija/relacija (Slika 29). V matriki za vsako relacijo prikazemo, katere transakcije do nje
dostopajo in za kakSno vrsto dostopa gre (vstavljanje, branje, spreminjanje, brisanje).

70

Slika 29: Matrika med relacijami in transakcijami

Transaction/ (A) (B) (C) (D) (E) (F)
Relation

Branch X X X
Telephone

Staff X X X X X
Manager

PrivateOwner X

BusinessOwner X

PropertyForRent X X X X X X X
Wiewing

Client

Registration

Lease

Newspaper

Advert

[= Insert; R = Read; U= Update: D = Delete
Vir: Connolly in Begg, 2010, str. 481.

5.4.5 Ocena velikosti podatkovne baze

Naslednji pomemben korak nacrtovanja je tudi ocena velikosti podatkovne baze, saj moramo
vedeti, koliko prostora na disku bomo zanjo potrebovali. Ocena je odvisna od velikosti posameznega
zapisa in Stevila zapisov ter Stevila indeksov. Koristna je tudi ocena, koliko zapisov bo v povprecju
dodanih na mesec ali leto, da lahko ocenimo tudi potencialno rast PB in prostor, ki ga bomo
potrebovali ¢ez leto ali dve.

5.4.6 Varnost podatkovne baze

Ker podatkovna baza predstavlja zelo pomemben informacijski vir vsakega poslovnega sistema,
morajo biti v fazi zajema zahtev ustrezno zajete tudi varnostne zahteve. V tem koraku pa se je
potrebno odlociti, kako bodo realizirane. Ker se SUPB tudi v varnostnih vidikih razlikujejo, je zelo
pomembno, da nacrtovalec dobro pozna ciljni SUPB. V sploSnem relacijski SUPB omogocajo dve vrsti
varnosti PB: sistemsko in podatkovno.

Sistemska varnost pokriva dostop in uporabo PB na sistemskem nivoju, npr. jo 8Citi z uporabniskim
imenom in geslom. Podatkovna varnost $¢iti odstop in uporabo posameznih objektov (npr. tabel,
pogledov) ter doloca akcije, ki jih uporabniki lahko nad temi objekti izvajajo (pregled, aZuriranje,
brisanje). Za dolocanje pravic dostopa SQL jezik pozna ukaza GRANT (dodamo pravice) in REVOKE
(pravice odvzamemo).

5.4.7 Denormalizacija

Normalizacija je postopek, s katerim razvrstimo atribute v relacije na podlagi njihovih funkcionalnih
odvisnosti. Rezultat je mnoZzica normaliziranih relacij, kar imenujemo logi¢ni nacrt podatkovne baze.
Postopek normalizacije smo obravnavali v poglavju 5.3. Normaliziran logi¢ni nacrt zagotavlja

71

minimalno mozno redundanco podatkov, vendar pa pogosto ne omogoca najboljSe odzivnosti
podatkovne baze. Vcasih se je tako potrebno odredi viSjim normalnim oblikam na racun doseganja
boljSe ucinkovitosti delovanja oziroma hitrejSe odzivnosti podatkovne baze. Vcasih zavestno

eves

oblike nikoli ne krsimo.

BoljSo ucinkovitost tak lahko dosezemo s postopkom denormalizacije, ki pa mora biti nadzorovana.
Normalizirane sheme v nekaterih primerih namrec¢ predstavljajo oviro za ucinkovitejSo
implementacijo programov.

Ce je odzivnost podatkovne baze slaba in ugotovimo, da podatkov dologene relacije uporabniki ne
aZurirajo pogosto, pogosto pa se jih bere oziroma po njih poizveduje, je denormalizacija lahko klju¢
do izboljSane odzivnosti. V okviru denormalizacije lahko izvedemo razlicna preoblikovanja. Tako
lahko npr. dolocene relacije zdruzimo (npr. gremo iz 4. poslovne normalne oblike nazaj na 3. NO),
kar pomeni manj relacij ter posledicno zmanjSano Stevilo operacij stika pri izvedbi poizvedb.

5.4.7.1 Primer denormalizacije iz 3. v 2. NO

Imejmo relaciji Oseba in Kraj z naslednjima relacijskima shemama:
Oseba (IDO, Ime, Priimek, Naslov, #Postna_st)
Kraj (Postna_st, Kraj).

Relaciji sta v 3. normalni obliki. Ce Zelimo dostopati do vseh podatkov o osebi, torej imenu, priimku,
naslovu, postni Stevilki in kraju, je pri poizvedbi potrebno izvesti operacijo stika med relacijama, kar
pa je z vidika u¢inkovitosti slabse kot ¢e bi imeli vse podatke v eni relaciji. Ce torej Zelimo izboljsati
ucinkovitost delovanja podatkovne baze, se lahko odlo¢imo, da bomo relaciji denormalizirali nazaj
v 2. normalno obliko, saj se nazivi krajev in postne Stevilke redko spreminjajo. Tako dobimo
naslednjo relacijo:

Oseba (IDO, Ime, Priimek, Naslov, Postna_st, Kraj)
5.4.7.2 Primer denormalizacije iz 4. PNO v 3. NO

Imejmo naslednje tri relacije Studentskega informacijskega sistema in sicer Oseba ter njeni
specializaciji Student in Pedagog, ki so v 4. poslovni normalni obliki (4. PNO):

Oseba (IDO, Ime, Priimek, Naslov, Postna_st),
Student (IDO,letnik, smer),
Pedagog(IDO, datum_zaposlitve, st_otrok).

Podobno kot prej nastopi tezava, ¢e Zelimo dostopati do vseh podatkov o Studentu ali pedagogu, saj
je zopet potrebno pri poizvedbi potrebno izvesti operacijo stika med relacijama, kar pa je z vidika
ucinkovitosti slabse kot e bi imeli vse podatke v eni relaciji. Tako se lahko odlo¢imo, da navedene

72

relacije denormaliziramo v 3. NO, pri cemer bomo imeli pri Studentih v poljih datum_zaposlitve in
st_otrok vedno null vrednosti. Podobno bomo vedno imeli null vrednosti pri poljih letnik in smer za
pedagoge. Dobimo relacijo v 3.NO:

Oseba (IDO, Ime, Priimek, Naslov, Postna_st, letnik, smer, datum_zaposlitve, st_otrok).

5.4.7.3 Primer denormalizacije iz 3. NO v 2. NO

Imejmo relacijo, v kateri hranimo rezultate smucarskega tekmovanja. V relaciji Rezultat zelimo
zabeleziti rezultat prvega in drugega teka in tako dobimo relacijo Rezultat, ki je v 3. NO:

Rezultat (IDR, Cas_Prvi_Tek, Cas_Drugi_Tek, #IDTekmovalec).

Pri nadaljnji obdelavi podatkov, npr. kreiranju vrstnega reda tekmovalcev na tekmi, pa vecinoma
potrebujemo sestevek obeh Casov, torej skupni ¢as. Ker vsakokratno racunanje skupnega casa kot
vsote Casa prvega teka in Casa drugega teka pomeni slabSo ucinkovitost, se odloimo za
denormalizacijo. Dodamo atribut Skupni_cas, ki ga izraCcunamo enkrat ter zapiSemo v podatkovno
bazo. Dobimo denormalizirano relacijo Rezultat, ki je tako le v 2. NO.

Rezultat (IDR, Cas_Prvi_Tek, Cas_Drugi_Tek, Skupni_cas, #/IDTekmovalec).

5.4.7.4 Primer denormalizacije v primeru Stevnosti med relacijama 1:1

Imejmo primer, kjerimamo podatke o stranki in z njo opravljenem intervjuju, lo¢eni v dveh relacijah.
Stranka (IDS, Ime, Priimek, Naslov, Postna_st, Telefon,tip_nepremicnine, maxcena)
Intervju (#IDS, Datum_intervjuja, Komentar, Sifra_zaposlenega).

Ce relaciji zdruZimo v relacijo Strankalntervju dobimo:

Strankalntervju (IDS, Ime, Priimek, Naslov, Postna_st, Telefon,tip_nepremicnine, maxcena,
Datum_intervjuja, Komentar, Sifra_zaposlenega)

Ker je sodelovanje v intervjuju opcijsko, bomo imeli v primeru velikega Stevila strank pri tako
denormalizirani relaciji veliko null vrednosti (za vse stranke, s katerimi intervjuja nismo opravili) ter
tako veliko izgubljenega prostora.

5.4.7.5 Primer denormalizacije dveh relacij s Stevnostjo 1:N

Imejmo relacijo Poslovalnica, za katero hranimo telefonske Stevilke, ki jih je seveda lahko vecé. Zato
smo relacijo normalizirali tako, da imamo dve relaciji in sicer Poslovalnica in Telefon:

Poslovalnica (IDPosl, Naslov, Posta)

Telefon (Tel_st, #IDPosl).

73

Ce zopet Zelimo optimizirati hitrost izvajanja poizvedb, relaciji denormaliziramo v eno samo relacijo.
To lahko storimo ob pogoju da: poznamo maksimalno Stevilo telefonskih Stevilk vsake poslovalnice,
da to $tevilo ni preveliko, in da se ne bo spreminjalo. Ce na primer vemo, da ima lahko poslovalnica
najvec tri telefonske Stevilke lahko relaciji denormaliziramo na naslednji nacin:

Poslovalnica (IDPosl, Naslov, Posta, Tell, Tel2, Tel3).

Ce se odlo¢imo za denormalizacijo, moramo razmisliti glede sprememb indeksov ned podatkovno
bazo. Poskrbeti moramo tudi za mehanizme, ki bodo kljub temu zagotavljali integriteto podatkov.
Splosni nacini so:
e Uporaba baznih proZilcev (ang. triggers), ki avtomatizirajo osveZevanje izracunanih ali
podvojenih podatkov.
e Vgradnja atomarnih transakcij v aplikacije, ki zagotovijo osvezevanje podatkov.
e Paketna obdelava, ki ob dolocenih ¢asovnih intervalih poskrbi za ponovno konsistentnost
podatkovne baze.

Najboljso integriteto zagotavljajo bazni proZilci, saj osvezevanje izvajajo takoj, vendar pa s tem spet
zmanjsujejo odzivnost baze.

Tabela podaja prednosti in slabosti, ki se jih moramo zavedati pri denormalizaciji.

Tabela 10: Prednosti in slabosti denormalizacije
Prednosti Slabosti
Lahko izboljSamo ucinkovitost PB z:

Predhodnem izraCunu in shranitvi dolo¢enih | Zmanjsanje hitrosti azuriranj podatkov
podatkov (primer 3)

ZmanjSanjem Stevila operacij stika med | Slabsa fleksibilnost podatkovne baze
relacijami (primer 1,2,4)

Zmanjsanje Stevila tujih kljucev Povecanje velikosti posamezne relacije

Zmanjsanje Stevila relacij (primer 2,4,5) Prilagojeno specifikam dolocene aplikacije

Zmanjsanje Stevila indeksov (manjSa poraba | Lahko poenostavi implementacijo v dolocenih

prostora) primerih, ter jo naredi bolj kompleksno v drugih
primerih

Vir: Connolly in Begg, 2005, str. 531.

Vprasanja za ponavljanje

1. Kaj je cilj fizicnega nacrtovanja podatkovne baze?
2. Aliso za to fazo potrebna kak$na specifi¢na znanja, katera?
3. Kaj vsebuje SQL skripta, ki jo dobimo kot rezultat fizicnega nacrtovanja?

74

4. Katere splosne vrste datotecnih organizacij za relacije in indekse poznate?

5. Kaj je namen analize transakcij?

6. Katero tehniko za analizo transakcij poznate?

7. Cemu sluZijo rezultati analize transakcij?

8. Kaj je namen kreiranja dodatnih indeksov, za katere stolpce jih je smiselno izdelati in za katere
ne?

9. Kateri dve vrsti varnostnih mehanizmov za varovanje dostopa do podatkovne baze poznate?

10. Katera dva ukaza za upravljanje dostopnih pravic do objektov podatkovne baze vsebuje jezik
saL?

11. Kaj je denormalizacija in kdaj jo izvedemo?

12. Katere mehanizme za zagotavljanje integritete podatkovne baze uporabljamo v primeru
azuriranja denormaliziranih relacij?

13. Nastejete prednosti in slabosti denormalizacije.

Naloge

Za delo s fizicno podatkovno bazo uporabite orodje Oracle APEX, ki je opisano v poglavju 8.3. Gre
za spletno orodje, ki v prvem koraku zahteva izdelavo delovne povrsine.

5.4.1 lzdelava fizicne podatkovne baze knjiZznice z uporabo SQL skripte v orodju APEX

e SQL skripto, ki jo izdelate za podatkovno bazo Oracle na podlagi relacijskega logi¢cnega
modela (glej Slika 60, Slika 61, Slika 62 v poglavju 8.2), uvozite v Apex.

e Preglejte skripto ter jo po potrebi popravite.

e Skripto poZenite z ukazom Run.

e Preglejte rezultate kreiranja, odpravite morebitne napake v skripti in postopek generiranja
ponovite.

e V brsalniku objektov (Object Browser) preglejte kreirane tabele.

e Vnesite podatke v podatkovno baze, vsaj tri zapise v vsako tabelo: Clanarina, Clan, Knjiga in
Izposoja.

Pazite na vrstni red vnosa podatkov!

5.4.2 Izdelava fizicne podatkovne baze skladis¢a z uporabo SQL skripte v orodju APEX

e Konceptualni podatkovni model skladis¢a (Slika 19) preslikajte v relacijski logi¢ni model.

e |z relacijskega modela kreirajte SQL skripto za izdelavo fiziéne podatkovne baze.

e SQL skripto uvozite v orodje Apex.

e Preglejte skripto ter jo po potrebi popravite.

e SQL Skripto poZenite z ukazom Run.

e Preglejte rezultate kreiranja, odpravite morebitne napake v skripti in postopek generiranja
ponovite.

75

V brsalniku objektov (Object Browser) preglejte kreirane tabele.
Vnesite podatke v podatkovno baze, vsaj tri zapise v vsako tabelo.

Pazite na vrstni red vnosa podatkov!

5.4.3 Rocna izdelava fizicne podatkovne baze publikacij

Kreirajte fizicno PB v orodju APEX na podlagi logicnega podatkovnega modela publikacij
(Slika 30).

Uporabite ukaze orodja Oracle Apex.

Ne pozabite kreirati omejitev primarnih in tujih kljucev (uporabite ukaze Apexa).

Kreirajte indekse na stolpce name, birth_date in gender tabele Author (uporabite ukaze
Apexa).

Vnesite podatke v podatkovno baze. Vnesite tri zapise v tabelo Author in Sest zapisov v
tabelo Publication, tako da ima vsaj en avtor vec razli¢nih publikacij.

Slika 30: Logi¢ni podatkovni model publikacij

AUTHOR PUBLICATION
PK |id PK,FK1 |id
H -O9 pk title
name
birth_date written_date
gender

5.4.4 Rocna izdelava fizicne podatkovne baze Studentskega IS
Kreirajte PB v orodju APEX za naslednji podatkovni model (Slika 31).

Uporabite ukaze orodja Oracle Apex.

Ne pozabite kreirati omejitev primarnih in tujih kljucev (uporabite ukaze Apexa).

Vnesite po vsaj tri zapise v tabele Predavatelj, Student in Predmet. Vnesite razlicno Stevilo
ocen za posamezne Studente v tabeli Indeks.

76

Slika 31: Logi¢ni podatkovni model studentskega IS

Predmet
Predavatel]
PK |ID
PK |ID
' aa NAZIV
IMEPRIIMEK SEMESTER
NAZIV LETNIK
IDPREDAVATEL
Student
iINDEKS PK |ID
PK |IDSTUDENT
PK |IDPREDMET | : LN;:ES;R‘:SI\:EK
EMSO
ggg:ivm DTROJSTVA
NASLOV
KRAJ

5.5 Spremljanje delovanja in optimizacija podatkovne baze

Med delovanjem podatkovne baze je potrebno spremljati njeno ucinkovitost, ter na podlagi
rezultatov spreminjati dolo¢ene nacrtovalske odlocitve (npr. denormalizirati doloCene relacije).
Denormalizacija, ki je podrobno predstavljena v poglavju 5.4.7, je eden od postopkov za izboljSanje
ucinkovitosti v primeru, da je le-ta slaba.

Cilj spremljanja in optimizacije razlicnih parametrov, je zagotoviti ¢im vecjo ucinkovitost podatkovne
baze. Parametri, ki jih spremljamo, so (Connolly in Begg, 2005, str. 532):

e Propustnost transakcij: v dolocenih sistemih, npr. bancnih, rezervacijskih, je pomembno, da
sistem lahko obdela veliko Stevilo transakcij na ¢asovno enoto.

e Odzivni ¢as: ¢im hitrejsi dostop do podatkov podatkovne baze z vidika uporabnika.

e Prostor na disku: ekonomic¢no shranjevanje podatkov podatkovne baze na disku.

Faza fizicnega nacrtovanja podatkovne baze se z zacetkom njene uporabe ne zakljuci, ampak gre za
stalen proces, ki vklju¢uje spremljanje navedenih parametrov in njihovo optimizacijo. Pogosto
izboljSanje enega parametra vpliva na poslabsanje drugega, zato mora skrbnik podatkovne baze
stalno spremljati ucinkovitost z razli¢nih vidikov in prilagajati dolo¢ene parametre. Za spremljanje
razlicnih parametrov delovanja podatkovne baze (gre za administratorska opravila) SUPB-ji
vsebujejo razlicna administratorska aplikativna orodja.

Optimizacija prametrov podatkovne baze nam lahko prinese naslednje koristi :
e Ni potrebno kupiti dodatne strojne opreme,
e Vpliv na vecjo ucinkovitost uporabnikov in s tem posledi¢no celotnega podjetja, ¢e imamo
boljSe odzivne Case ali ¢e podatkovna baza lahko obdela ve¢ transakcij na ¢asovno enoto.
e Boljsi odzivni ¢asi vplivajo na vecje zadovoljstvo zaposlenih.
e BoljsSi odzivni ¢asi lahko vplivajo tudi na vecje zadovoljstvo strank.

77

Da bi administrator lahko povecal ucinkovitost delovanja podatkovne baze, mora dobro razumeti,
kako razlicne komponente racunalniskega sistema medsebojno vplivajo in kakSen je nadalje njihov
vpliv na ucinkovitost baze.

Zelo pomemben racunalniski vir, ki zagotavlja hitro delovanje aplikacij, je glavni pomnilnik (ang.
main memory). Ce je glavnega pomnilnika premalo, je potrebno veckrat brati podatke z diska. Ce je
tega prevec, je delovanje pocasno. Za zagotovitev ucinkovite rabe glavnega pomnilnika, mora
skrbnik podatkovne baze dobro poznati delovanje konkretnega SUPB: kako uporablja glavni
pomnilnik, kakSne nacine vmesnega pomnjenja uporablja (ang. buffer), kakSne nastavitve njegove
velikosti so moZne, itd. Potrebno je poznati tudi vzorce dostopa uporabnikov do podatkovne baze:
povecanje Stevila hkratnih uporabnikov podatkovne baze namrec povzroci tudi vecje potrebe po
glavnem pomnilniku.

Vhodno izhodne operacije (branje in pisanje na disk) predstavljajo mnozi¢no opravilo pri delu z vsako
podatkovno bazo. Diski imajo obicajno priporoceno 1/O stopnjo. Ko je ta stopnja
presezena, se pojavijo I/O ozka grla. Ta nastopijo v primeru, ko Zeli v doloceni ¢asovni enoti do diska
dostopati prevec procesov, kar pomeni, da morajo, doloCeni ¢akati. V primeru, da prihaja do ozkih
grl, je potrebno datoteke razporediti med vec diskov tako, da bodo z vidika dostopov ¢im bolj
enakomerno obremenjeni. Priporocljivo je tako lociti datoteke operacijskega sistema od datotek
podatkovne baze, podatke baze od indeksnih datotek baze, log datoteke od podatkov baze in
podobno.

Ozka grlo lahko predstavlja tudi racunalnisko omrezje. Ce je prometa na njem veliko, ali je veliko
kolizije prometa, lahko nastanejo ozka grla na omrezju preko katerega uporabniki dostopajo do
podatkovne baze, ki je navadno namescena na skupnem strezniku.

Spremembe dolo¢enega racunalnidkega vira lahko pozitivno vplivajo na drug vir. Ce tako na primer
povec¢amo koli¢ino glavnega pomnilnika, to vpliva na manjse Stevilo I/O operacij. Spremljanje
delovanja in prilagajanje podatkovne baze in fizicnih racunalniskih virov, na katerih podatkovna baza
deluje, je stalen proces. V ¢asu delovanja podatkovne baze namrec prihaja tako do spremenjenih
nacinov dostopa s strani uporabnikov, povecanja/zmanjsanja Stevila uporabnikov, ter sprememb v
njihovih zahtevah, kar povzroca potrebo po stalnih prilagoditvah. Spremembe pa je potrebno
izvajati previdno, saj lahko dolocene spremembe imajo tudi negativne vplive na druge parametre
delovanja. Zato se vedno priporoca spremembe izvajati na testni bazi v testnem okolju ali vsaj izven
delovnega ¢asa uporabnikov.

Naloge

Za delo s fizicno podatkovno bazo uporabite orodje Oracle APEX, ki je opisano v poglavju 8.3. Gre
za spletno orodje, ki v prvem koraku zahteva izdelavo delovne povrsine.

78

5.5.1 Prilagoditev fizicne podatkovne baze Studentskega IS novim poslovnih zahtevam

Fizicno podatkovno bazo, ki ste jo izdelali v nalogi 5.4.4, prilagodite novonastalim uporabniskim
zahtevam in sicer:

e Za predavatelje Zeli Sola hraniti Se: datum zadnje izvolitve v naziv, rojstni datum in Stevilo
otrok.

e Za Studente pa Zeli Sola hraniti Se: elektronski naslov in Stevilko mobilnega telefona za
obvescanje.

e Sola je zacela tudi z mednarodnimi izmenjavami, zato Zeli shranjevati tudi podatke o njih in
sicer: osebo, ki se je udelezila izmenjave (Student ali predavatelj), termin izmenjave, Stevilo
opravljenih ur predavanj za pedagoske delavce ter podatke o Soli, kjer se izmenjava opravi.

Z orodjem APEX kreirajte nove tabele in atribute, ki bodo omogocali shranjevati navedene podatke
ter jih ustrezno umestite ter povezite z obstojeco podatkovno bazo.

79

6 Jeziki za delo z relacijsko podatkovno bazo

6.1 Relacijska algebra

Relacijska algebra je postopkovni poizvedovalni jezik, ki temelji na relacijski teoriji. Sestavljena je iz
mnozice operacij, ki obdelajo eno ali dve vhodni relaciji in kot rezultat vrnejo novo. Operacije
relacijske algebre se delijo na osnovne in izvedene.

Med osnovne operacije spadajo (Mohori¢, 1992, str. 117-120, Korth in Silberschatz, 1991, str. 60-

70):

Selekcija: Rezultat operacije je mnozica n-teric, ki ustrezajo podanim pogojem. Le-ti so
podani v obliki predikata, v katerem se lahko pojavijo primerjalni in logi¢ni operatorji (iz
tabele se izlocijo vrstice, ki ne ustrezajo pogojem).

Projekcija: Operacija ustvari novo relacijo, ki vsebuje le podmnoZico atributov prvotne (iz
tabele se izlocijo nekateri stolpci).

Kartezijski produkt: V relaciji, ki nastane kot rezultat kartezijskega produkta, se nahajajo vsi
mozni stiki n-teric obeh vhodnih relacij, pri cemer shemo kartezijskega produkta sestavljata
obe vhodni shemi.

Unija: V uniji dveh relacij se nahajajo n-terice obeh relacij, pri ¢emer so dvojne vrstice
izloCene. Operacija je smiselna le v primeru, ko obe relaciji pripadata isti relacijski shemi.
Razlika: Razlika dveh relacij dolo¢a novo relacijo, v kateri se nahajajo zgolj tiste
n-terice prve relacije, ki ne nastopajo v drugi.

lzvedene operacije relacijske algebre pa so (Mohoric¢, 1992, str. 120-122, Korth in Silberschatz, 1991,
str. 70-75):

Presek: Presek dveh relacij je mnozica n-teric, ki pripadajo obema vhodnima relacijama.
Naravni stik: V naravnem stiku se nahajajo vsi mozni stiki n-teric, pri katerih so komponente,
ki pripadajo enako imenovanim atributom iz obeh shem enake, pri cemer so podvojene
komponente izloCene. Poleg selekcije in projekcije predstavlja naravni stik najpogosteje
uporabljeno operacijo v poizvedovalnih jezikih.

O stik: Rezultat operacije je relacija, v kateri se nahajajo vsi mozni stiki vhodnih relacij, v
katerih sta izbrani komponenti v medsebojni relaciji © (podana je s primerjalnimi operator;ji).

6.2 Relacijski racun

Za razliko od relacijske algebre, se pri relacijskem racunu ne navaja postopka izvajanja operacij nad

relacijami, temveC se podajo lastnosti iskane relacije. Relacijo je moc¢ zapisati v naslednji obliki
(Mohori¢, 1992, str. 124):

{t(n)ZF(t)} (iskano relacijo sestavljajo vse tiste n-terice, ki zadoé¢ajo formuli F)

80

Formula F je sestavljena iz atomov razli¢nih oblik, pri cemer pa je potrebno upostevati doloc¢ena
pravila glede same oblike atomov in njihovega sestavljanja v kompleksne izraze. Izpolnjena mora
biti namre¢ zahteva po varnih izrazih relacijskega rac¢una, ki zagotavlja, da bo rezultat vedno le
koncna relacija. Relacijski racun predstavlja temelje sploSnim poizvedovalnim jezikom kot je SQL.

6.3 SQL

Z relacijsko algebro in relacijskim ra¢unom je mozno skonstruirati obsezne poizvedbe namenjene
relacijskim podatkovnim bazam. Ker pa gre pri njiju predvsem za matemati¢no notacijo, nista
primerna za prakticno uporabo v konkretnih sistemih za upravljanje podatkovnih baz. Eden od
vidikov proucevanj relacijskega podatkovnega modela se je zato nanasal na razvoj uporabnejsih
jezikov. V prvi polovici sedemdesetih let je tako nastalo kar nekaj jezikov, med katerimi velja omeniti
SEQUEL (Structured English Query Language), kot predhodnika danasnjega jezika SQL. Razvil ga je
D. D. Chamberlin s sodelavci v IBM San Jose laboratorijih leta 1974. Prva implementacija SEQUEL-a
je bila narejena v okviru IBM-ovega prototipa SEQUEL-XMR v letih 1974-75. Hitremu razvoju jezika
SQL in Siritvi njegove uporabe v komercialnih sistemih je sledila njegova standardizacija. Leta 1982
je ANSI (American National Standard Institute) ustanovil komite za podatkovne baze z nalogo razviti
predlog za standardiziran relacijski jezik. Predlog, ki je bil ratificiran leta 1986, je vseboval predvsem
IBM-ovo razli€ico jezika SQL z odpravljenimi pomanjkljivostmi. Leto kasneje je standard ANSI za
relacijski jezik prevzela $e organizacija ISO (International Standards Organization).

Jezik SQL vsebuje vrsto pripomockov za definiranje, manipuliranje in nadzor podatkov v relacijskih
podatkovnih bazah. SQL je danes najpogosteje uporabljen jezik za dostop do relacijskih
podatkovnih baz in vsi pomembni sistemi za upravljanje podatkovnih baz vsebujejo eno izmed
njegovih razli¢ic. Osnovna znacilnost SQL-a je neproceduralni pristop, ki ga je povzel po relacijskem
racunu, hkrati pa se izogiba matematicni notaciji z uporabo angleskega jezika. Na ta nacin zdruzuje
moc relacijske algebre in relacijskega racuna s preprostostjo in razumljivostjo angleskega jezika.

Opredelitev jezika SQL kot standarda ima tako prednosti kot slabosti. Med prednosti se lahko uvrsti

(Date, 1989, str. 4):

e Zmanjsanje stroskov za izobraZevanje: Programerji lahko svoje znanje uporabljajo na razli¢nih
sistemih, dodatno izobrazevanje ni potrebno oziroma je omejeno na minimum.

e Prenosljivost programskih resitev: Aplikacije razvite v jeziku SQL lahko delujejo v okviru razli¢nih
sistemov za upravljanje podatkovnih baz in na razli¢ni strojni opremi.

e Komunikacija med razlicnimi sistemi: Omogoca komunikacijo med razlicnimi sistemi za
upravljanje podatkovnih baz in s tem izgradnjo porazdeljenih podatkovnih sistemov.

e Poenostavljena izbira: Ce vsi sistemi podpirajo isti vmesnik za dostop do podatkov, se uporabnik
lahko osredotoci na druge dejavnike pri izbiri ustreznega sistema za upravljanje podatkovnih
baz.

81

Pomembnejse slabosti pa so naslednje (Date, 1989, str. 5):

Standardizacija lahko zadusi kreativnost: Obstaja namre¢ moZnost, da programerji ne bodo
iskali najboljse resitve dolo¢enega problema, saj standard Ze predpisuje neko alternativo, ki pa
ni nujno tako ucinkovita.

SQL je dale€ od idealnega relacijskega jezika: Za nacrtovanje formalnih jezikov obstaja kar nekaj
dobrih principov, ki pa se jih razvijalci jezika SQL po mnenju mnogih niso drzali (pomanjkanje
ortogonalnosti vgrajenih funkcij, spremenljivk, praznih mnozic itd.). Tako jezik vsebuje obilo
omejitev in posebnih pravil, kar ga naredi tezkega za definiranje, opis, ucenje in implementacijo.
Standard SQL je na posameznih podrocjih zelo pomanjkljiv: Nima definiranih vseh konceptov
relacijske teorije, ki bi jih potrebovali v vsakdanji praksi (pomanjkljivosti pri podpori zunanjih
kljucev, domen, stikov, podatkovnih kurzorjev itd.). Prav zato so se v preteklosti in se Se danes
pojavljajo razliCice jezika z bolj ali manj obseznimi razsSiritvami.

Ceprav pogosto govorimo o jeziku SQL kot o poizvedovalnem jeziku, pa SQL vsebuje tudi vrsto
dodatnih elementov, ki omogocajo celovito obravnavo shranjenih podatkov. V jeziku SQL sta
zdruZzena tako DDL (Data Definition Language) - jezik za definiranje podatkov (kreiranje elementov
podatkovne baze), kot tudi DML (Data Manipulation Language) - jezik za manipulacijo s podatki.

Osnovne elemente jezika tako lahko strnemo v naslednje tocke (Rob in Coronel, 2004, str. 226-228):

Jezik za definiranje podatkov (ang. Data Definition Language): Definiranje podatkov je
sestavljeno iz vecjega Stevila korakov. Zacne se s kreiranjem same podatkovne baze, nadaljuje z
vzpostavitvijo delovnih podrocij in konca s kreiranjem tabel. Medtem ko sta prvi dve opravili
tesno povezani s posameznim sistemom za upravljanje podatkovnih baz oziroma njegovo
razliCico jezika SQL, je kreiranje tabel standardizirano in se izvaja s stavkom SQL Create Table. V
okviru definiranja tabel je potrebno navesti nazive in podatkovne tipe atributov oziroma
stolpcev ter vse zahtevane omejitve. Le-te se nanasajo na izbor primarnih in tujih kljucev,
povezanosti tabele s preostalimi tabelami preko tujih kljucev in druge omejitve v obliki razli¢nih
prepovedi in vrednostnih omejitev. Pomembno mesto pri definiranju ucinkovite podatkovne
baze je potrebno nameniti tudi nacrtovanju indeksov nad podatki. Indekse definiramo nad vsemi
atributi, ki predstavljajo primarni klju¢ tabele ter nad atributi, po katerih se pogosto izvajajo
poizvedbe. SQL v ta namen uporablja stavek Create Index.

Jezik za manipulacijo s podatki (Data Manipulation Language): Obstajajo Stirje osnovni stavki
SQL za manipulacijo s podatki:

o Select: Uporablja se za kreiranje bolj ali manj obseznih poizvedb nad podatkovno bazo.
Omogoca prakti¢no izvajanje temeljnih operacij relacijske algebre (selekcije, projekcije
in stika) nad relacijami oziroma tabelami. SploSna oblika stavka je "Select - From -
Where", pri Cemer se rezultati poizvedbe shranijo v novo, za¢asno tabelo. Njena oblika
je odvisna od uporabljenih parametrov znotraj stavka Select, v splosSnem pa se
najpogosteje uporablja sortiranje in grupiranje.

o Insert: Omogoca vstavljanje podatkov v tabelo. Preprosto vstavljanje poteka vrstica za
vrstico, s kombinacijo stavkov Insert in Select pa je mogoce vstaviti tudi mnoZico vrstic
kot rezultat poizvedbe.

o Update: Uporablja se za spreminjanje vrednosti posameznih atributov v tabeli.

82

o Delete: BriSe vrstice iz tabele, pri ¢emer se lahko operacija tako kot pri stavku Update
izvaja nad posamezno vrstico ali mnozico vrstic, ki zados¢ajo izbranim pogojem.

Vgrajeni jezik za manipulacijo s podatki (ang. Embedded DML): Posebne oblike jezika SQL so
namenjene uporabi skupaj s klasi¢nimi programskimi jeziki kot so C, Fortran, Pascal itd. Uporaba
te kombinacije zdruZi poizvedovalno moc jezika SQL pri delu s podatkovnimi bazami s hitrostjo
in ucinkovitostjo jezikov tretje generacije.

Pogledi: SQL vsebuje dva tipa tabel: osnovne tabele (fizicno obstajajo na diskih, v njih so
shranjeni dejanski podatki, zanje so definirani razli¢ni indeksi) in pogledi (navidezne tabele, ki
uporabniku izgledajo enako kot fizicne tabele, niso pa vedno fizicno zapisane na pomnilniskih
medijih). Pogledi predstavljajo moc¢no orodje za izgradnjo in predstavitev razlicnih vidikov
podatkov, shranjenih v relacijskih podatkovnih bazah. Pogledi imajo pomembno vlogo tudi pri
zagotavljanju varnosti podatkov, ko je potrebno omogociti vpogled uporabnikom zgolj v
nekatere segmente centraliziranega podatkovnega modela, ostale pa zavarovati pred
nepooblaséenimi dostopi.

Agregatne funkcije: Uporabljajo se za izvajanje racunskih operacij nad izbranimi podatki iz tabel.
Osnovne funkcije so: Avg (povprecje), Min (minimum), Max (maksimum), Sum (vsota) in Count
(Stetje). Poleg njih vsebujejo razlicice jezika SQL Se veliko dodatnih funkcij, ki omogocajo
kompleksno obdelavo podatkov s ciljem zagotoviti uporabnikom Zelene informacije.

Varnost: SQL vsebuje stavke, ki omogocajo dolocanje pravic dostopa do tabel in pogledov ter
manipulacijo z njimi. V ta namen se uporabljata stavka Grant (dodeljevanje pravice) in Revoke
(odvzemanije pravice).

6.3.1 SOL DDL

SQL DDL je jezik za definiranje podatkov (ang. Data Definition Language). Omogoca kreiranje

podatkovne baze in njenih gradnikov (tabel, stolpcev, omejitev, indeksov...).

SQL stavki so sestavljeni iz rezerviranih in uporabnisSko definiranih besed. Rezervirane besede so

natanc¢no dolocCene, napisane morajo biti pravilno, ne smejo se lomiti med vrstice. Uporabnisko

4
4
4

definirane besede oznacujejo razne podatkovne objekte, kot so npr. tabele, stolpci, pogledi.

Vecina komponent SQL stavkov je neodvisna od velikosti pisave; izjema so tekstovni podatki. Da
dosezemo boljSo berljivost, piSemo SQL stavke v vec vrsticah in z zamiki:

Vsak sklop SQL stavka se zaCne v novi vrstici.
Sklopi so levo poravnani.
Ce ima sklop ve¢ delov, je vsak v svoji vrstici in poravnan z zaéetkom sklopa.

83

Za opis sintakse SQL stavkov v nadaljevanju bomo uporabljali razsirjeno BNF! notacijo:
REZERVIRANE BESEDE z velikimi ¢rkami,

uporabnisko definirane besede z malimi ¢rkami,

Znak | za izbiro med alternativami,

{Obvezni elementi} v zavitih oklepajih,

[Opcijski elementi] v oglatih oklepajih,

Znak ... za opcijske ponovitve (0 ali vec).

v v v v v Vv

Tabela 11: Ukazi SQL DDL

Ukaz Opis
CREATE TABLE Kreiranje nove tabele
NOT NULL Omejitev, ki zagotavlja, da stolpec ne bo vseboval null vrednosti.
UNIQUE Omejitev, ki zagotavlja, da v stolpcu ne bo podvojenih vrednosti.
PRIMARY KEY Definira primarni kljuc tabele.
SECUNDARY KEY Definira tuji kljuc tabele.
DEFAULT Definira privzeto vrednost stolpca (se privzame, kadar ni podane
druge vrednosti)
CREATE INDEX Kreiranje indeksa tabele.
CREATE VIEW Kreiranje pogleda. Gre za dinami¢no podmnoZico vrstic in stolpcev iz
doloCene mnotZice tabel.
ALTER TABLE Spreminja definicijo tabele potem, ko je ta Ze kreirana (doda,
spremeni, briSe stolpce ali omejitve).
DROP TABLE Trajno zbriSe tabelo z vsemi podatki.
DROP INDEX Trajno zbrise indeks tabele.
DROP VIEW Trajno zbrise pogled.

SQL stavki podani kot primeri v tem poglavju se nanasajo na primer podatkovne baze knjiznice,
katere nacrt se nahaja v poglavju 8.2.2 (Slika 61). Relacijski model obsega Stiri tabele: CLAN,
CLANARINA, IZPOSOJA in KNJIGA.

Podatkovna baza knjiZznice je podana z naslednjo relacijsko shemo:

CLAN (ST izkaznica, Ime, Priimek, Naslov, E_naslov, Datum_placila, #Vrsta_clana)
CLANARINA (Vrsta_clana, Znesek)

KNJIGA (ISBN, Avtor, Naslov, Zalozba, Leto_izida, Dovoljen_cas_izposoje)
IZPOSOJA (#ISBN, #ST izkaznica, Datum_izposoje, Datum_vrnitve)

1 BNF = Backus Naur Form

84

6.3.1.1 Kreiranje tabel

Za kreiranje tabel novih uporabljamo SQL stavek CREATE TABLE. Pri kreiranju tabele navedemo ime
tabele in imena stolpcev s podatkovnimi tipi kot prikazuje v nadaljevanju podana sintaksa.
Navedemo tudi morebitne omejitve stolpcev, npr. NOT NULL.

Sintaksa:

CREATE TABLE <table_name> (
<column_name_1> <data_type 1>,
<column_name_2> <data_type 2>,
<column_name_N> <data_type N>);

6.3.1.1.1 Primer kreiranja tabele CLAN

Z uporabo stavka CREATE TABLE kreiramo tabelo Clan. Njeni stolpci so ST_izkaznica, Ime, Priimek,
Naslov, E_naslov, Datum_placilain Vrsta_clana. Za vsak stolpec podamo tudi podatkovni tip, ki pove,
kaksno vrsto podatkov bo vanj mozno vpisati (npr. tip VARCHAR2(20) pomeni, da bomo v stolpec
Ime lahko vpisali do 20 poljubnih znakov, tip DATE pa da bomo v stolpec Datum_placila lahko vnesli
le datume). Kreiramo tudi omejitve NOT NULL za stolpec ST _izkaznica, ki predstavlja primarni kljuc¢
tabele, in stolpec Vrsta_clana, ki predstavlja tuji kljuc (povezava s tabelo CLANARINA). Omejitvi NOT
NULL pomenita, da bo pri vhosu vrstice v tabelo potrebno vnesti vsaj ta dva podatka.

CEEATE TABLE Clan
i
5T izkaznica NUMBER (4) NOT NOLL ,

Ime VARCHARZ (20)
Priimek VARCHARZ (20)
Ha=lov VARCHARZ2 (40) ,
E naslov WARCHARZ (40) ,

Datum placila DATE ,
Vrsta clana WARCHARZ? NOT NULL

6.3.1.1.2 Primer kreiranja tabele KNJIGA

Z uporabo stavka CREATE TABLE kreiramo Se tabelo Knjiga. Njeni stolpci so ISBN (primarni kljuc),
Avtor, Naslov, Zalozba, Leto_izzida, Dovoljen_cas_izp. Za vsak stolpec podamo tudi podatkovni tip.
Kreiramo tudi omejitev NOT NULL za stolpec ISBN, ki predstavlja primarni kljuc.

CEEATE TABLE Enjiga
i

ISEN HUMBEE (13) HOT HULL ,
AVTtor WVARCHARZ (20) ,

HNa=slov VARCHARZ2 (30) ,
Zalozba VARCHARZ2 (20} ,

Leto izzida HUMBEER (4) ,

Dovoljen cas_izp VARCHARZ (10)

85

6.3.1.2 Kreiranje indeksov

Z uporabo stavka CREATE [UNIQUE] INDEX kreiramo indekse. Poznamo dve vrsti indeksov. Na
stolpce, ki predstavljajo primarne klju¢ne, moramo postaviti unikatne indekse (ang. unique), na
ostale pa postavimo obicajne indekse.

Sintaksa:

CREATE [UNIQUE] INDEX <index_name> on <table_name> (
<column_name_1>,

<column_name_2>,

<column_name_N>);

6.3.1.2.1 Primer kreiranja unikatnega (unique) indeksa na stolpcu ISBN (primarni kljuc)
V tem primeru kreiramo unique indeks na stolpcu ISBN, ki predstavlja klju¢ tabele KNJIGA.

CREATE UNIQUE INDEX Knjiga ISEN ON Knjiga
!
ISEN ASC

6.3.1.2.2 Primer kreiranja indeksa na stolpcu Avtor
Navadni indeks postavimo na stolpec Avtor, saj predvidevamo, da bodo uporabniki pogosto iskali
knjige po avtoriju.

CREATE INDEX Enjiga avtor ON Enjiga
!
Avtor ASC
)z

6.3.1.3 Kreiranje pogledov
Z uporabo stavka CREATE VIEW kreiramo poglede.

Sintaksa:

CREATE [OR REPLACE] VIEW <view_name> AS

<sql_select_statement>;

6.3.1.3.1 Primer kreiranja pogleda placila ¢lanarine

Izdelajmo pogled, ki prikazuje placilo clanarine. Prikazati Zelimo ime in priimek ¢lana, kdaj je
nazadnje placal ¢lanarino in v kak§nem znesku. V pogledu tako zdruZimo podatke iz dveh tabel: CLAN
in CLANARINA.

CREATE OR REPLACE VIEW placilo_clanarine AS

SELECT ime, priimek, st_izkaznica, datum_placila, znesek
FROM clan, clanarina

WHERE clan.vrsta_clana = clanarina.vrsta_clana;

86

Podatke sedaj lahko pregledujemo preko tega pogleda kot bi bili shranjeni v eni sami tabeli, saj
pogled vkljuCuje stolpce obeh tabel (ime, priimek, st_izkaznica, datum_placila iz tabele Clan in
znesek iz tabele Clanarina).

Slika 32: Prikaz podatkov dveh tabel z uporabo pogleda placilo_clanarine

Peter Potocnik 4 - 10
Metka Novak 1 01/28/2015 10
Alenka RoZanec 2 01/03/2015 30
Tim Prisel 3 12/12/2014 30

row(s)1-4of4

6.3.1.4 Definiranje omejitev

OMEIJITEV NOT NULL
Zgoraj smo Ze spoznali omejitev NOT NULL, ki jo moramo dati k stolpcem s kljuci, lahko pa jo damo
h kateremu koli stolpcu. Omejitev uporabimo, kadar je vnhos dolo¢enega podatka obvezen.

6.3.1.4.1 Primer obveznosti imena, priimka in naslova (NOT NULL)
Ce se odlogimo, da so ime, priimek in naslov obvezni podatki, tudi k tem stolpcem dodamo omejitev
NOT NULL.

CREATE TABLE Clan
(
5T izkaznica NUMBER (4) NOT NULL ,

Ime WVARCHARZ (20) NWOT HWULL ,
Priimek VARCHARZ (20) WOT HULL ,
Has=lowv VARCHARZ (40) WOT WULL ,
E naslov VARCHARZ (40) ,

Datum placila DATE ,

Vrsta clana VARCHARZ (10) WOT HULL

I
OMEJITEV PRIMARNEGA KLJUCA

Omejitvi primernega in tujega klju¢a dodajamo k tabelam s stavkom ALTER TABLE.

Sintaksa:

ALTER TABLE <table_name> ADD CONSTRAINT <constraint_name>
PRIMARY KEY (

<column_name_1>,

<column_name_2>,...

<column_name_N>);

87

6.3.1.4.2 Primer omejitve primarnega kljuca tabele CLAN
ALTER TABLE Clan ADD CONSTRAINT Clan PK PRIMARY KEY
[

ST izkaznica

)z

6.3.1.4.3 Primer omejitve primarnega kljuca tabele IZPOSOJA (sestavljen kljuc)
ALTER TABLE Izposoja ADD CONSTRATNT Izposcja PE PRIMARY EEY
!

5T izkaznica, ISEN

I

OMEJITEV TUJEGA KLJUCA
Omejitev tujega kljuca pove, kateri stolpci v posameznih tabelah tvorijo tuje kljuce.

Sintaksa:

ALTER TABLE <table_name> ADD
CONSTRAINT <constraint_name>
FOREIGN KEY (

<column_name_1>, ...
<column_name_N>)

REFERENCES <referenced_table_name> (
<column_name_1>, ...
<column_name_N>);

88

6.3.1.4.3 Primeri vseh omejitev tujega kljuca v bazi knjiznice
ALTER TABLE Clan ADD CONSTRAINT Clan Clanarina FE FOREIGH EEY (Vrsta clana)
REFERENCES Clanarina (Vrata clana)

ALTER TABLE Izposoja ADD CONSTRATNT Izposoja Clan FE FOREIGH KEY (ST _izkaznica)
REFERENCES Clan (ST _izkaznica)

ALTER TABLE Izposcja ADD CONSTRAINT Izposcja Enjiga FK FOREIGN EEY (ISBN)
REFEREWCES Enjiga (ISEN) ;

6.3.1.5 Brisanje gradnikov podatkovne baze

Za brisanje tabele podatkovne baze uporabljamo SQL stavek DROP TABLE z naslednjo sintakso:
DROP TABLE <table_name>

IzbriSemo tabelo CLAN iz podatkovne baze.

6.3.1.5.1 Primer: Brisanje tabele CLAN
DROP TABLE Clan;
Za brisanje pogleda podatkovne baze uporabljamo SQL stavek DROP VIEW z naslednjo sintakso:
DROP VIEW <view_name>
IzbriSemo pogled placilo_clanarine.

6.3.1.5.2 Primer brisanja pogleda placilo_clanarine
DROP VIEW placilo_clanarine;

Za brisanje indeksa podatkovne baze uporabljamo SQL stavek DROP INDEX z naslednjo sintakso:
DROP INDEX <index_name>
IzbriSemo indeks na stolpcu avtor.

6.3.1.5.3 Primer brisanja indeksa Knjiga_avtor
DROP INDEX Knjiga_avtor;

6.3.1.6 Dodeljevanje in odvzemanje pravic
Za dodelitev in odvzem pravic v SQL-u poznamo stavka GRANT in REVOKE.

Za dodeljevanje pravic uporabljamo stavek GRANT z naslednjo sintakso:
GRANT {Privilegelist | ALL PRIVILEGES}

ON ObjectName

TO {AuthorizationldList | PUBLIC}

[WITH GRANT OPTION]

Privilegelist je sestavljen iz ene ali vec pravic, loCenih z vejico (INSERT, UPDATE,...). Lahko pa damo
vse pravice (ALL PRIVILEGES). PUBLIC omogoca dodelitev pravic vsem trenutnim in bodocim

89

uporabnikom. ObjectName se nanasa na osnovno tabelo, pogled, domeno, znakovni niz, dodelitve
in prevedbe. WITH GRANT OPTION dovoljuje, da uporabnik naprej dodeljuje pravice.

6.3.1.6.1 Primer dodelitve pravic vsem knjizni¢arjem nad tabelo IZPOSOJA
GRANT ALL PRIVILEGES
ON Izposoja
TO Knjiznicar WITH GRANT OPTION;

Za odvzem pravic uporabljamo stavek REVOKE z naslednjo sintakso:
REVOKE [GRANT OPTION FOR]

{PrivilegelList | ALL PRIVILEGES}

ON ObjectName

FROM {AuthorizationldList | PUBLIC}

[RESTRICT | CASCADE]

6.3.1.6.2 Primer odvzema vseh pravic knjiznicarjev nad tabelo CLAN
REVOKE ALL on clan FROM Knjiznicar;

6.3.2 SOL DML

SQL DML (ang. Data Manipulation Language) je jezik, ki vsebuje mnozZico operacij za manipulacijo
s podatki, shranjenimi v podatkovni bazi. Omogoca dodajanje, brisanje, spreminjanje ter razlicna
poizvedovanja. DML skupina zajema naslednje SQL stavke (Connolly in Begg, 2010, str. 139):

» INSERT - Dodajanje novih podatkov v podatkovno bazo
» DELETE - Brisanje podatkov iz podatkovne baze
» UPDATE = Spreminjanje podatkov shranjenih v podatkovni bazi in

» SELECT - Izbira doloéenih skupin podatkov iz podatkovne baze.

Vsi nenumeri¢ni podatki morajo biti podani znotraj enojnih narekovajev. SQL ne razlikuje med
velikimi in malimi érkami pri pisanju (vseeno je ali ime tabele ali atributa zapiSemo kot clan, Clan,
ali CLAN).

90

Tabela 12: Ukazi in operatorji SQL DML

Ukaz Opis

INSERT Doda vrstico ali ve€ vrstic v doloceno tabelo.

SELECT Izbere atribute ene ali vec tabel/pogledov.
WHERE Omeji izbor vrstic le na tiste vrstice, ki zados¢ajo pogoju.
GROUP BY Grupira izbrane vrstice po enem ali vec atributih.
HAVING Omeji izbor grupiranih vrstic glede na podani pogo;j.
ORDER BY Uredi izbrane vrstice po enem ali vec atributih.

UPDATE Spremeni vrednosti atributov v eni ali vec vrsticah tabele.

DELETE BriSe eno ali vec vrstic tabele.

Primerjalni operatorji

=,<,>,<=,>=,<>

Se uporabljajo pri definiranju pogojev nad Stevilénimi vrednostmi.

Logi¢ni operatorji

AND/OR/NOT Se uporabljajo pri definiranju kompleksnejsih pogojev.
Posebni operatorji Se uporabljajo pri definiranju pogojev in sicer:
BETWEEN Preveri ali je vrednost atributa znotraj podanega intervala.
IS NULL Preveri, ali je vrednost atributa null (atribut nima vrednosti).
LIKE Preveri, ali vrednost atributa ustreza podanemu vzorcu (za podatke tipa
char).
IN Preveri, ali je vrednost atributa ustreza vsaj eni od vrednosti iz podanega
seznama vrednosti.
EXISTS Preveri ali vgnezdena poizvedba vrne vsaj eno vrstico (takrat je vrednost
true, drugace pa false).
DISTINCT Omeji vrednosti, ki so rezultat poizvedbe tako, da se ne ponavljajo.
Agregatne funkcije Se uporabljajo v stavku SELECT za matematicne operacije nad stolpci
tabel.
COUNT Vrne Stevilo vrstic z ne-nul vrednostmi v dolo¢enem stolpcu.
MIN Vrne najmanjso vrednost v dolo¢enem stolpcu.
MAX Vrne najvecjo vrednost v doloéenem stolpcu.
SUM Vrne sestevek vseh vrednosti v dolo¢enem stolpcu.
AVG Vrne povprecno vrednost vseh vrednosti doloCenega stolpca.

6.3.2.1 Dodajanje podatkov - INSERT

Za dodajanje vrstic v tabelo podatkovne baze uporabljamo stavek INSERT. Navedemo stolpce in
vrednosti, ki jih Zelimo vpisati. Navesti je potrebno vse tiste stolpce in vrednosti, ki zahtevajo vnos
(imajo omejitev NOT NULL). Sintaksa in primer sta podana spodaj.

91

Sintaksa:

INSERT INTO <table_name> (
<column_name_1>,...
<column_name_N>)
VALUES (
<column_value_1>,...
<column_value_N>);

0.1 Primer vnosa novega clana v tabelo CLAN
INSERT INTO clan (
St_izkaznica, ime, priimek, naslov, vrsta_clana)
VALUES (
5,'Joze','Jamnik’,'Na jami 10','Upokojenec');

Vnesemo novega Clana JoZeta Jamnika v tabelo Clan. Obvezna podatka sta St_izkaznica in
vrsta_clana, ki predstavljata primarni oz. tuji klju¢ (nanju smo postavili omejitev NOT NULL). Vnesli
bomo Se podatke o imenu, priimku in naslovu.

Po izvedbi SQL stavka - vnosa novega zapisa imamo v tabeli CLAN dodano vrstico s tem ¢lanom
(Tabela 13) s stevilko izkaznice 5. Nismo vnesli E_naslov in datum_placila ¢lanarine, zato sta ti dve
celici v vrstici novo dodanega ¢lana prazni.

Tabela 13: Prikaz podatkov v tabeli CLAN po izvedbi ukaza INSERT

EDIT ST_IZKAZNICA IME PRIIMEK NASLOV E_MNASLOV DATUM_PLACILA VRSTA_CLANA
4 Peter Potognik - - - Dijak
1 Metka =~ MNovak Trzaska c.26 metka novak@gmail.com 01/28/2015 Student
2 Alenka = RoZanec Viska c. 45 - 01/03/2015 Zaposleni
3 Tim Prisel - tim.prisel@gmail.com 12112/2014 Zaposleni
5 Joze Jamnik MNa jami 10 - - Upokojenec

row(s)1-5of5

Podatke v tabelo lahko polnimo tudi tako, da jih prepiSemo iz druge, Ze obstojece tabele. Tabeli
morata imeti taksSni relacijski shemi, da je prepis mozen (kompatibilni podatkovni tipi).

Sintaksa — prepis iz druge tabele:

INSERT INTO <table_name> (
<column_name_1>,...

<column_name_N>)

SELECT <column_value_1>, <column_value _N>...
FROM <from_table_name> ...;

0.2 Primer vnosa nove osebe v tabelo Oseba s prepisom iz tabele Predavatelj
INSERT INTO Oseba (

92

ime,

priimek)

SELECT imepriimek, naziv
FROM Predavatelj;

6.3.2.2 Spreminjanje podatkov - UPDATE

Za spreminjanje podatkov uporabljamo stavek UPDATE. Navedemo ime tabele, stolpce in vrednosti,
ki jih Zelimo prepisati. Ce Zelimo spremeniti le dolo¢ene vrstice, podamo $e pogoj WHERE. Sintaksa
in primer sta podana spodaj.

Sintaksa:

UPDATE <table_name>

SET <column_name_1> = <column_value_1>,
<column_name_2> = <column_value_2>,...
<column_name_N> = <column_value _N>;
[WHERE]

6.3.2.2.1 Primer spremembe hisne Stevilke znotraj naslova predhodno dodanega ¢lana
UPDATE clan
SET naslov = 'Na Jami 20'
WHERE st_izkaznica=5;

Tabela 14: Prikaz podatkov v tabeli CLAN po izvedbi ukaza UPDATE

EDIT ST IZKAZNICA IME PRIMEK NASLOV E_NASLOV DATUM_PLACILA VRSTA_CLANA
4 Peter Potocnik - - - Dijak
1 Metka ~ Movak Trzaska c.25 = metka.novak@gmail.com = 01/28/2015 Student
2 Alenka RozZanec Viska c. 45 - 01/03/2015 Zaposleni
3 Tim Prisel - tim_prisel @gmail.com 121212014 Zaposleni
5 Joze Jamnik Ma Jami 20 - - Upokojenec

row(s) 1-5of &

6.3.2.3 Brisanje podatkov - DELETE
Za brisanje podatkov iz podatkovne baze uporabljamo stavek DELETE. Navedemo ime tabele in
pogoje. Sintaksa in primer sta podana spoda;j.

Sintaksa:
DELETE FROM <table_name>
WHERE <column_name_N> = <column_value_N>...;

6.3.2.4.1 Primer brisanja predhodno dodanega ¢lana s Stevilko izkaznice 5
DELETE FROM clan
WHERE st_izkaznica=5;

93

Tabela 15: Prikaz tabele CLAN po izvedbi ukaza DELETE

EDIT ST_IZKAZNICA IME PRIIMEK NASLOV E_MNASLOV DATUM_PLACILA VRSTA_CLANA
4 Peter Potognik - - - Dijak
1 Metka =~ Movak Trzaska c.25 metka.novak@gmail.com 01/28/2015 Student
2 Alenka RoZanec Vigka c. 45 - 01/03/2015 Zaposleni
3 Tim Prisel - tim.prisel@gmail.com 12112/2014 Zaposleni

6.3.2.4 Poizvedbe - SELECT

Namen SELECT stavka je poizvedovanje in prikaz podatkov iz ene ali ve¢ medsebojno povezanih
tabel. Je zelo mocen ukaz, s katerim lahko v enem stavku izvedemo ve¢ ukazov relacijske algebre:
selekcijo, projekcijo in join vec tabel. SQL SELECT je najpogosteje uporabljan SQL stavek. Njegova
splosna sintaksa je podana spodaj.

Sintaksa:
SELECT [DISTINCT | ALL]
{* | [columnExpression [AS newName]] [,...] }
FROM TableName [alias] [, ...]
[WHERE condition]

[GROUP BY columnlList] [HAVING condition]
[ORDER BY columnlList]

Vrstnega reda sklopov ni mozno spreminjati. Obvezna sta samo SELECT in FROM sklopa. Pomen
sklopov je nasledniji:

» SELECT: doloca stolpce, ki naj se pojavijo v izhodni relaciji (projekcija)

» FROM: doloca tabele za poizvedbo

» WHERE: filtrira vrstice (selekcija), lahko vklju¢imo tudi povezovanje tabel (join)
» GROUP BY: zdruZuje vrstice po vrednostih izbranih stolpcev

» HAVING: filtrira skupine glede na dolo¢ene pogoje

> ORDER BY: doloc¢a vrstni red vrstic na izhodu

POIZVEDBE NAD ENO TABELO
6.3.2.4.1 Primer: IzpiSi vse podatke o vseh ¢lanih
Poizvedbo lahko zapiSemo na dva nacina. Lahko nastejemo vse stolpce tabele ¢lan (prvi primer) ali
uporabimo okrajsavo * (drugi primer). Tabela 16 prikazuje rezultat poizvedbe.
SELECT st_izkaznica, ime, priimek, naslov, e_naslov, datum_placila, vrsta_clana

94

FROM Clan;

ali

SELECT *
FROM Clan;

Tabela 16: Rezultat poizvedbe primera 6.3.2.4.1

4 Peter Potoénik - - - Dijak

6 Janez Jamnik Jamna ulicas - - Student
7 Jaka Jamnik Jamna ulica6 - - Student

1 Metka MNovak Triaska c.25 metka novak@gmail.com 01/28/2015 Student
2 Alenka RoZanec ViSkac 45 - 01/03/2015 Zaposleni
3 Tim Prisel - tim_prisel@gmail.com 12/12/2014 Zaposleni

6.3.2.4.2 Primer: IzpiSi vse knjige (ISBN, avtor, naslov)
SELECT isbn, avtor, naslov
FROM Knjiga;

Pri poizvedbi lahko navedemo samo dolocene stolpce, ki nas zanimajo (projekcija). Stolpci bodo
prikazani v takSnem vrstnem redu kot jih navedemo v poizvedbi. Tabela 17 prikazuje rezultat
poizvedbe.

Tabela 17: Rezultat poizvedbe primera 6.3.2.4.2

9616046128 TomaZ Mohori€ Podatkovne baze
9788611171982 Tolkien, J. R.R. Tja in spet nazaj
9788611172086 Tolkien, J. R.R. Gospodar prstanov -Brat.

6.3.2.4.3 Primer: IzpiSi vse €lane, ki letos Se niso placali ¢lanarine - uporaba WHERE pogoja
V WHERE pogoju lahko uporabimo naslednje vrste testiranja izpolnjevanja pogoja:
e Primerjava: primerjamo vrednosti dveh izrazov
e Obseg: testiramo, ali je vrednost v podanem obsegu
e Clanstvo v mnoiici: testiramo, ali je vrednost enaka kateremu od elementov mnozice
e Vzorec: testiramo, ali se string ujema s podanim vzorcem
e NULL (brez vrednosti): testiramo, ali je stolpec brez vrednosti.
Podamo lahko vec pogojev, ki jih lo¢imo z logi¢nimi operatorji in (AND), ali (OR), negacija (NOT).

SELECT st_izkaznica, ime, priimek, datum_placila

95

FROM clan
WHERE (EXTRACT (year from datum_placila)<2015) or (datum_placila IS NULL);

Pri tej poizvedbi dodamo pogoje z uporabo WHERE, in sicer so to tisti ¢lani, ki so se pravkar vélanili
in imajo polje datum_placila se prazno ali pa je v tem polju zapisan datum_placila iz katerega od
preteklih let. Gre torej za pogoij, ki vsebuje dva dela, lo¢ena z operatorjem ali (ang. or). V prvem delu
pogoja testiramo, ali je datum_placila pred letom 2015, v drugem pa ali je datum_placila brez
vrednosti. Rezultat poizvedbe so torej vrstice, ki ustrezajo prvemu ali drugemu pogoju (Tabela 18).

Tabela 18: Rezultat poizvedbe primera 6.3.2.4.3

Peter Potonik
Janez Jamnik

Jaka Jamnik

W o= @M A

Tim Prisel 12M12/2014

6.3.2.4.4 Primer: IzpiSi vse ISBN Stevilke iz tabele izposoja — uporaba ukaza DISTINCT

Ker je vsaka knjiga lahko izposojena veckrat imamo v izpisu duplikate. Ukaz DISTINCT nam omogoca
izloCiti duplikate.

Tabela 19 prikazuje rezultat poizvedbe izpisa ISBN Stevilk knjig iz tabele Izposoja z duplikati in brez
duplikatov (DISTINCT).

SELECT ISBN SELECT DICTINCT ISBN
FROM lzposoja; FROM lzposoja;

Tabela 19: Rezultat poizvedbe primera 6.3.2.4.4 z duplikati in brez duplikatov

9616046128 9768611171982
9788611171982 9516046128
9788611171982

9788611171982

9616046128

6.3.2.4.6 Primer: Izracunana polja
V SELECT stavku lahko kreiramo stolpce, ki so rezultat izracuna iz podatkov enega ali vec drugih

stolpcev. Pri izraCunu lahko uporabljamo matemati¢ne operacije seStevanja, odStevanja, mnozZenja
in deljenja in seveda oklepaje, ki nam omogocajo kreiranje kompleksnejsih izraCunov. Podajamo
enostaven primer uporabe izraCuna zneska c¢lanarine z 20% popustom (Tabela 20). Ukaz AS nam
omogoca poimenovanje novo nastalega stolpca.

96

SELECT vrsta_clana,znesek, znesek-znesek*0.2 AS Znesek_s_popustom
FROM clanarina;

Tabela 20: Rezultat poizvedbe primera 6.3.2.4.6

Student 10 8
Zaposleni 30 24
Dijak 10 8
Upokojenec 10 8
Otrok 0 0

6.3.2.4.7 Primer: Sortiranje izpisa podatkov

Primer prikazuje izpis vseh knjig urejenih po naslovu. Za sortiranje izpisa podatkov uporabljamo ukaz
ORDER BY. Podamo stolpec ali vec stolpcev po katerih Zelimo urediti izpis ter povemo Se smer
sortiranja: narascajoce (ASC je privzeto) ali padajoce (DESC).

SELECT naslov, avtor, ISBN
FROM knjiga
ORDER BY naslov;

Tabela 21: Rezultat poizvedbe primera 6.3.2.4.7

Gospodar prstanov -Brat. Tolkien, J. R. R, 9788611172088
Podatkovne baze TomaZ Mohorié 9616046128
Tja in spet nazaj Tolkien, J. R. R, 9788611171962

POIZVEDBE NAD VEC TABELAMI

Ce Zelimo poizvedovati nad ve¢ tabelami, moramo dodati ukaze za povezovanje tabel med seboj.
Pri tem imamo ve¢ moznosti. Najenostavnejsi nacin povezovanja je navedba povezovalnih stolpcev
v WHERE pogoju kot prikazuje primer v nadaljevanju.

6.3.2.4.8 Primer: Izpis vseh izposoj za knjige

Ker imamo v tabeli Izposoja samo datum izposoje, datum vrnitve in ISBN knjige, Zelimo pa izpisati
tudi avtorja in naslov, moramo s tabelo Izposoja povezati Se tabelo Knjiga. Tabeli sta povezani preko
stolpca ISBN.

SELECT knjiga.isbn, knjiga.naslov, knjiga.avtor, izposoja.datum_izposoje, datum_vrnitve

FROM knjiga, izposoja
WHERE knjiga.isbn=izposoja.isbn

97

Tabela 22: Rezultat poizvedbe primera 6.3.2.4.8

8788611171982 Tja in spet naza] Tolkien, J. R. R. 01/22/2015 -

9616046128 Podatkovne baze TomaZ Mohorié 01/05/2015 01/20/2013
8788611171982 Tja in spet naza] Tolkien, J. R. R 01/01/2014 02/20/2014
9788611171982 Tja in spet naza] Tolkien, J. R. R, 01/01/2015 01/20/2015
9616046128 Podatkovne baze TomaZ Mohorié 01/22/2015 -

SQL standard omogoca tudi druge, alternativne naCine povezovanja tabel v poizvedbah kot podaja
naslednja sintaksa.

SELECT ...

FROM table1 INNER JOIN table2

ON tablel.columnl = table2.columnl
AND tablel.column2 = table2.column2;

SELECT ...
FROM table1 INNER JOIN table2
USING (column1, column2);
6.3.2.4.9 Primer: IzpiSi vse Clane, ki letos Se niso placali ¢lanarine skupaj z zneski.
Znesek je odvisen od vrste ¢lana in je zapisan v tabeli clanarina. Za povezovanje uporabimo ukaz
INNER JOIN.
SELECT st_izkaznica, ime, priimek, datum_placila, clanarina.znesek
FROM clan INNER JOIN clanarina
ON clan.vrsta_clana = clanarina.vrsta_clana
WHERE (EXTRACT (year from datum_placila)<2015) OR (datum_placila IS NULL);

Tabela 23: Rezultat poizvedbe primera 6.3.2.4.9

4 Peter Potoénik - 10
B Janez Jamnik - 10
7 Jaka Jamnik - 10
3 Tim Prisel 12/12/2014 30

6.3.2.4.10 Primer: Uporaba levega povezovanja (LEFT JOIN)

Izpis knjig z izposojami, pri ¢emer Zelimo prikazati tudi knjige, ki Se niso bile nikoli izposojene. V
izpisu tako vidimo tudi knjigo Gospodar prstanov, ki Se ni bila nikoli izposojena (stolpec
datum_izposoje nima podatka).

98

SELECT knjiga.ISBN, knjiga.avtor, knjiga.naslov, izposoja.datum_izposoje,
izposoja.datum_vrnitve
FROM knjiga LEFT JOIN izposoja ON knjiga.ISBN=izposoja.ISBN

Rezultat poizvedbe je enak tudi, ¢e uporabimo desno povezovanje (RIGHT JOIN), vendar tokrat od
tabele Izposoja na tabelo Knjiga.
SELECT knjiga.ISBN, knjiga.avtor, knjiga.naslov, izposoja.datum_izposoje,
izposoja.datum_vrnitve
FROM izposoja RIGHT JOIN knjiga ON knjiga.ISBN=izposoja.ISBN

Tabela 24: Rezultat poizvedbe primera 6.3.2.4.10

9616046128 TomaZ Mohorié ~ Podatkovne baze 01/05/2015 01/20/2015
9616046128 TomaZ Mohorie ~ Podatkovne baze 0112212015 -
9788611171982 Tolkien, J. R.R. Tja in spet nazaj 01/01/2015 01/20/2015
9788611171982 Tolkien, J. R.R. Tja in spet nazaj 01/2242015 -
9788611171982 Tolkien, J. R.R. Tja in spet nazaj 01/01/2014 02/20/2014

9788611172088 Tolkien. J. R. R. Gospodar prstanov -Brat. - -

UPORABA AGREGATNIH FUNKCU
» COUNT: vrne stevilo vrednosti v dolo¢enem stolpcu

» SUM: vrne sestevek vrednosti v dolo¢enem stolpcu

» AVG: vrne povprecje vrednosti v dolo¢enem stolpcu
» MIN: vrne najmanjso vrednost v dolo¢enem stolpcu
» MAX: vrne najvecjo vrednost v dolo¢enem stolpcu

6.3.2.4.11 Primer: Prestej Stevilo vseh knjig knjiznice
SELECT COUNT (isbn) AS Stevilo_vseh_knijig
FROM knjiga

Tabela 25: Rezultat poizvedbe primera 6.3.2.4.11

6.3.2.4.12 Primer: IzpiSi znesek, ki ga je knjiznica letos prejela s ¢lanarinami
SELECT SUM(znesek)
FROM clan INNER JOIN clanarina
ON clan.vrsta_clana = clanarina.vrsta_clana
WHERE (EXTRACT (year from datum_placila)=2015);

99

Rezultat poizvedbe pokaze, da je knjiznica do sedaj prejela 40€ ¢lanarine.
Tabela 26: Rezultat poizvedbe primera 6.3.2.4.12

40

eves

SELECT MAX(znesek)
FROM clanarina;

evee

Tabela 27: Rezultat poizvedbe primera 6.3.2.4.13

30

evee

SELECT MIN(znesek) AS "Minimalni znesek"
FROM clanarina;

evaes

Tabela 28: Rezultat poizvedbe primera 6.3.2.4.14

6.3.2.4.15 Primer: Prestej Stevilo izposoj za posameznega ¢lana, izpiSi padajoce po Stevilu izposoj
SELECT clan.priimek, clan.ime, COUNT(izposoja.isbn) AS ST_izposoj
FROM izposoja, clan
WHERE izposoja.st_izkaznica=clan.st_izkaznica
GROUP BY clan.priimek, clan.ime
ORDER BY 3 DESC

Uporabimo tudi ukaz GROUP BY, ki podatke o izposoji grupira po €lanu in nato sesteje Stevilo izposoj
za posameznega ¢lana. Ukaz ORDER BY nam izpis uredi tako, da je na prvem mestu izpisan ¢lan z
najvec izposojami.

100

Tabela 29: Rezultat poizvedbe primera 6.3.2.4.15

MNovak Metka 2
Prisel Tim 1
Potoénik Peter 1

RoZanec Alenka 1

HAVING sklop je namenjen uporabi v kombinaciji z GROUP BY kot omejitev skupin, ki se lahko
pojavijo v rezultatu. Deluje podobno kot WHERE in sicer:

e WHERE filtrira posamezne vrstice

e HAVING filtrira skupine.
Stolpci, ki so navedeni v HAVING sklopu, morajo biti tudi v SELECT sklopu ali v agregatih.

6.3.2.4.16 Primer: IzpiSi le tiste ¢lane, ki imajo vec kot eno izposojo
SELECT clan.priimek, clan.ime, COUNT(izposoja.isbn)
FROM izposoja, clan
WHERE izposoja.st_izkaznica=clan.st_izkaznica
GROUP BY clan.priimek, clan.ime
HAVING COUNT(izposoja.isbn)>1;

Tabela 30: Rezultat poizvedbe primera 6.3.2.4.16

Movak Metka 2

DELO S NIzl
Za delo z nizi (tip STRING) je zelo koristna uporaba operatorja LIKE. Pri tem uporabljamo dva posebna
znaka (velja za podatkovno bazo Oracle, na kateri so narejeni spodnji primeri):

e nadomesca natanko en znak,

e % nadomesca poljubno Stevilo znakov niza.
Pri tem moramo patziti tudi na velike in male crke, saj jih PB Oracle razlikuje: P#p. Pri delu z nizi
vedno uporabimo tudi posebna znaka narekovajev.

V MS Accessu se v povezavi z operatorjem LIKE uporabljata:
e ? nadomesca natanko en znak,
e * nadomesca poljubno Stevilo znakov niza.

6.3.2.4.17 Primer: IzpiSi vse Clane, katerih priimek se zacne na ¢rko P
SELECT ime, priimek
FROM Clan
WHERE Priimek LIKE 'P%';

101

Tabela 31: Prikaz vseh ¢lanov (levo) in rezultat poizvedbe (desno) primera 6.3.2.4.17

Peter Pototnik Peter Potofnik
Janez Jamnik Tim Prisel
Jaka Jamnik

Metka MNovak
Alenka RoZanec

Tim Prisel

6.3.2.4.18 Primer: Izpisi vse ¢lane, ki imajo kjerkoli vimenu ¢rko e
SELECT ime, priimek
FROM Clan
WHERE Ime LIKE '%e%'

Tabela 32: Rezultat poizvedbe primera 6.3.2.4.18

Peter Potofnik
Janez Jamnik
Metka MNovak

Alenka RoZanec

6.3.2.4.19 Primer: IzpiSi vse ¢lane, ki imajo v priimku na drugem mestu ¢rko o in vimenu na tretjem
mestu ¢rko t (ostale ¢rko so poljubne)

SELECT ime, priimek

FROM Clan

WHERE Priimek LIKE '_0%' AND Ime LIKE '__t%';

Tabela 33: Rezultat poizvedbe primera 6.3.2.4.19

Peter Pototnik

Metka MNovak

UPORABA OPERATORIJA IN /NOT IN

Primeri v nadaljevanju so podani nad domeno nepremicninske agencije, ki vsebuje tabeli
Napremicnina (

Tabela 34) in Lastnik (Tabela 35). Relacijski shemi pa sta naslednji:

Nepremicnina(IDNep, Naslov, Mesto, St_sob,Visina_najem, #Lastnik)
Lastnik (IDLastnik, Naslov_last, Mesto_last, Telefon,ImePriimek)

102

Tabela 34: Vsebina tabele Nepremicnina

41 ASkerieva 15 Maribor 4 350 42

61 TomaZiteva 2 Ljubljana 2 330 61

1 ViSka c. 25 Liubljana 3 200 1

24 Aljazeva 10 Maribor 3 300 41

21 Triaska c.25 Ljubljana 50 10000 21

22 TriaSkac. 100 Ljubliana 5 700 41

23 TomaZiceva 10 Ljubliana 2 350 41
Tabela 35: Vsebina tabele Lastnik

61 Rozmanova 35 Koper - Tone Hrovat

1 Vidka ¢ 25 Ljubljana 51233367 Alenka RoZanec

21 Triaska .25 Ljubljana - Fakulteta za elektrotehniko

41 Mariborska u. 20 Maribor - Marko Skate

42 Vinska c. 100 Maribor - Tone Movak

6.3.2.4.20 Primer: Uporaba operatorja IN
Clanstvo dolo¢ene vrednosti v mnoZici testiramo z uporabo operatorja IN oz. NOT IN.
NapisSimo poizvedbo z uporabo operatorja IN, ki izpiSe dvosobne in trosobne tiste nepremicnine iz
tabele Nepremicnina.
SELECT IDNep, Naslov, Mesto, STSOb
FROM Nepremicnina
WHERE STSob IN (2,3)

Poizvedbo lahko napiSemo tudi z uporabo operatorja OR na naslednji nacin:
SELECT IDNep, Naslov, Mesto, STSOb
FROM Nepremicnina
WHERE STSob=2 OR STSob=3;

V primeru velikega Stevila pogojev, je uporaba operatorja IN ucinkovitejsa.

Tabela 36: Rezultat poizvedbe primera 6.3.2.4.20

61 Tomaziteva 2 Ljubljana 2
1 Viska c. 25 Ljubljana 3
24 AljaZeva 10 Maribor 3
23 Tomaziteva 10 Ljubljana 2

103

6.3.2.4.21 Primer: Uporaba operatorja NOT IN
IzpiSimo Se vse vecje nepremicnine (vse, razen enosobnih in dvosobnih).

SELECT IDNep, Naslov, Mesto, STSOb
FROM Nepremicnina
WHERE StSob NOT IN (1,2);

Tabela 37: Rezultat poizvedbe primera 6.3.2.4.21

41 ASkerteva 15 Maribor 4

1 Viska c. 25 Ljubliana 3

24 AljaZeva 10 Maribor 3

21 Triaska ¢ .25 Ljubljana 50

22 TrfaSkac. 100 Ljubliana 5
MNOZICE

Jezik SQL vsebuje naslednje operatorje za delo z mnoZicami:

Unijo (ang. UNION): vrne vrstice, ki predstavljajo unijo dveh tabel brez duplikatov

Unijo z duplikati (ang. UNION ALL): vrne vrstice, ki predstavljajo unijo dveh tabel z duplikati
Presek (ang. INTERSECT): vrne vrstice, ki se pojavijo v obeh tabelah, torej tvorijo presek.
Razliko (ang. MINUS): vrne vrstice, ki so v prvi in niso v drugi tabeli.

Da lahko izvajamo nastete operacije, morata tabeli A in B biti skladni (domene atributov morajo biti

enake).

6.3.2.4.22 Unija brez duplikatov (UNION)
IzpiSi vsa mesta (brez duplikatov), kjer se nahaja nepremicnina, ali kjer je doma vsaj en lastnik.

SELECT mesto

FROM Nepremicnina
UNION

SELECT mesto_last
FROM Lastnik;

Prvi SELECT stavek vrne vsa mesta, kjer se nahajajo nepremicnine, drugi SELECT stavek pa mesta,
kjer se nahaja vsaj en lastnik. Vmes vstavimo ukaz za UNION, s ¢imer dobimo unijo vseh mest iz obeh
tabel brez duplikatov. Tako se izpiSejo mesta Koper, Ljubljana in Maribor.

104

Tabela 38: Rezultat poizvedbe primera 6.3.2.4.22

Results Explain Describe Sz

Koper
Ljubljana
Maribor

3 rows returned in 0.00 seconds

6.3.2.4.23 Unija z duplikati (UNION ALL)

Ce uporabimo ukaz UNION ALL dobimo vsa mesta, ki se nahajajo v eni ali drugi tabeli, skupaj 12
mest, torej so ista mesta zapisana veckrat.

SELECT mesto

FROM Nepremicnina
UNION ALL

SELECT mesto_last
FROM Lastnik;

Tabela 39: Rezultat poizvedbe primera 6.3.2.4.23

Results Explain Describe Sa

Maribor
Ljubljana
Ljubljana
Maribor
Ljubljana
Ljubljana
Ljubljana
Koper
Ljubljana
Ljubljana
Maribor
Maribor

12 rows returned in 0.00 seconds

6.3.2.4.24 Presek (INTERSECT)
IzpiSimo mesta, kjer se nahaja vsaj ena nepremicnina in je doma vsaj en lastnik.

SELECT mesto
FROM Nepremicnina

105

INTERSECT

SELECT mesto_last

FROM Lastnik;
Prvi SELECT stavek vrne mesta nepremicnin (to sta Ljubljana in Maribor), drugi SELECT pa mesta,
kjer Zivijo lastniki (Koper, Ljubljana in Maribor). Z ukazom za presek (ukaz INETERSECT) dobimo
presek obeh mnozic in koncni rezultat, ki je prikazan spoda;j.

Tabela 40: Rezultat poizvedbe primera 6.3.2.4.24

Results Explain

Ljubljana
Maribor

2 rows returned in 0

6.3.2.4.25 Razlika (MINUS)
IzpiSimo mesta, kjer je doma vsaj en lastnik, a ni nobene nepremicnine. Gre za razliko mest lastnikov
in nepremicnin.

SELECT mesto_last
FROM Lastnik
MINUS

SELECT mesto

FROM Nepremicnina;

Prvi SELECT stavek vrne mesta lastnikov (Koper, Ljubljana in Maribor), drugi SELECT pa mesta
nepremicnin (Ljubljana in Maribor). Z ukazom za razliko (MINUS) od mest lastnikov odstejemo mesta
nepremicnin in dobimo koncni rezultat, ki je prikazan spodaj.

Tabela 41: Rezultat poizvedbe primera 6.3.2.4.25

Results Explain Describe S

Koper
1 rows returned in 0.01 seconds

VGNEZDENE POIZVEDBE

V jeziku SQL lahko med seboj gnezdimo tudi vec poizvedb. Nekateri SQL stavki imajo tako lahko
vgnezdene SELECT stavke, ki jih imenujemo podpoizvedbe (ang. subquery or nested query).
Vgnezdeni SELECT stavki se lahko uporabijo v WHERE ali HAVING sklopih drugega SELECT stavka,
lahko pa tudi v INSERT, UPDATE in DELETE stavkih. Vgnezdeni SELECT stavki ne smejo uporabljati
ORDER BY sklopa.

106

Pri vgnezdenih stavkih lahko uporabimo naslednje SQL operatorije:
e ANY, SOME: primerja vrednost z vsaj eno vrednostjo seznama. Pogoj je izpolnjen, ¢e vsaj ena
vrednost iz seznama ustreza pogoju.
e ALL: primerja vrednost z vsemi vrednostmi seznama. Pogoj je izpolnjen, ¢e vse vrednosti iz
seznama ustrezajo pogoju.
e EXSISTS in NOT EXISTS: vracata vrednosti true in false. EXSISTS vraca true, ¢e vgnezdeni select
vrne vsaj eno vrstico. NOT EXISTS pa vrne true, kadar je rezultat vgnezdene poizvedbe prazen.

Poznamo tri tipe vgnezdenih poizvedb:

e Skalarna poizvedba: vrne en sam stolpec in eno samo vrstico, oziroma eno samo vrednost
(primer 6.3.2.4.26).

e Tabelaricna poizvedba: vrne vec vrstic, lahko tudi vec stolpcev. TakSno poizvedbo
uporabimo, ko potrebujemo tabelo vrednosti, pogosto v povezavi z operatorjem IN (primer
6.3.2.4.27).

e Vrsticna poizvedba: vrne vec stolpcev, vendar eno samo vrstico.

6.3.2.4.26 Primer vgnezdene poizvedbe nad tabelo Nepremicnina
IzpiSi nepremicnine, ker je cena najema visja od povprecne cene najema vseh nepremicnin v tabeli.
Vgnezdena poizvedba vrne povpreCno ceno najema, glavna poizvedba pa izpiSe vse tiste
nepremicnine, kjer je visina_najem>povprecne cene.
SELECT *
FROM nepremicnina
WHERE visina_najem>(
SELECT AVG(Visina_najem)
FROM Nepremicnina)

Povprecna cena najema v tabeli Nepremicnina je 1790 (glej podatke v Tabela 34).

Tabela 42: Rezultat poizvedbe primera 6.3.2.4.26

21 Tréaska c.25 Ljubljana 50 10000 21

6.3.2.4.27 Primer: Tabelari¢na vgnezdena poizvedba
IzpiSi podatke o nepremicninah, kjer je njen lastnik v mnozici Maribor¢anov (uporaba operatorja IN).
Vgnezdeni SELECT stavek kreira mnozico Mariborcanov (id 41, 42). Zunanji SELECT stavek pa izpise
podatke o nepremicni, e je vrednost atributa Lastnik (gre za id lastnika iz tabele Lastnik) v mnoZici
Mariboréanov.
SELECT IDNep, Naslov, Mesto, STSOb
FROM Nepremicnina
WHERE Lastnik IN (
SELECT IDLastnik
FROM Lastnik
WHERE Mesto_last="Maribor')

107

Tabela 43: Rezultat vgnezedene poizvedbe (levo) in glavne poizvedbe(desno) primera 6.3.2.4.27

41 61 Tomaiiteva 2 2

42 1 Viska c. 25 3
21 Triaska c 25 50
22 Triaskac 100 &
23 TomaZiieva 10 2

6.3.2.4.28 Primer: Uporaba operatorja ANY
V vgnezdenih SELECT stavkih, ki vracajo en sam stolpec, lahko uporabljamo operator ANY. Namesto
ANY lahko uporabljamo tudi SOME.

IzpiSimo nepremicnine, katerih najemnina je viSja od najemnine vsaj ene ljubljanske nepremicnine.

SELECT IDNep, visina_najem,Naslov, Mesto,Lastnik
FROM Nepremicnina
WHERE visina_najem>ANY(

SELECT visina_najem

FROM Nepremicnina

WHERE Mesto='Ljubljana’);

Tabela 44: Rezultat vgnezedene poizvedbe (levo) in glavne poizvedbe(desno) primera 6.3.2.4.28

330 21 10000 Triaska ¢ .25 Ljubljana 21
500 22 700 TrfaSkac. 100 Ljubljana 41
10000 1 200 Viska c. 25 Ljubljana 1

700 41 350 ASkerteva 15 Maribor 42
350 23 350 TomaZiteva 10 Ljubljana 41

6.3.2.4.29 Primer: Uporaba operatorja ALL
IzpisSimo nepremicnine, katerih najemnina je viSja od najemnine vseh ljubljanskih nepremicnin.
Rezultat te poizvedbe je prazen, saj takSna nepremicnina ne obstaja.

IzpiSimo nepremicnine, katerih najemnina je visja od najemnine vseh mariborskih nepremicnin.
Imamo dve mariborski nepremiénini. Vidimo, da so tri ljubljanske nepremicnine draZje od obeh
mariborskih.

SELECT IDNep, visina_najem,Naslov, Mesto
FROM Nepremicnina
WHERE visina_najem>ALL(

SELECT visina_najem

FROM Nepremicnina

WHERE Mesto='Maribor');

108

Tabela 45: Rezultat vgnezedene poizvedbe (levo) in glavne poizvedbe(desno) primera 6.3.2.4.29

350 1 500 Viska c. 25 Ljubljana
300 22 700 TriaSkac. 100 Ljubljana
21 10000 TrZaska .25 Ljubljana

6.3.2.4.30 Primer: Uporaba operatorja EXISTS

Operatorja EXISTS in NOT EXISTS se uporabljata izkljucno v vgnezdenih poizvedbah (ang.
subqueries). Vracata vrednosti true oz. false. EXSITS vraca true, ¢e vgnedena poizvedba vrne vsaj
eno vrstico. NOT EXISTS je nasproten operatorju EXSITS. Ker EXSITS in NOT EXISTS vracata le

vrednosti true in false, lahko vgnezdena poizvedba vraca poljubno Stevilo stolpcev.

Imamo relacijo Zaposleni, v kateri hranimo podatke o zaposlenih ter tudi podatek o nadrejenem

delavcu z naslednjo relacijsko shemo in naslednjimi podatki:

Tabela 46: Vsebina tabele Zaposleni
EDIT DS DELOVNO_MESTO SIFRA_SEFA IME_PRIIMEK

-

1 Sef kuhinje - Marko Sef
1 30 Kuhar 1 1 Tine Jaklié
1 20 Kuhar 1 1 Janko Novak

Vrni vse zaposlene, ki so nadrejeni vsaj enemu delavcu.

SELECT zap.DS, zap.Ime_priimek
FROM Zaposleni zap

WHERE EXISTS

(SELECT sef.DS

FROM Zaposleni sef

WHERE sef.Sifra_sefa = zap.DS);

Tabela 47: Rezultat poizvedbe primera 6.3.2.4.30

1 Marko Sef

109

6.3.2.4.31 Primer: Uporaba operatorja NOT EXISTS

Vrni vse zaposlene, ki niso nadrejeni nikomur.
SELECT zap.DS, zap.Ime_priimek

FROM Zaposleni zap

WHERE NOT EXISTS

(SELECT sef.DS

FROM Zaposleni sef

WHERE sef.Sifra_sefa = zap.DS);

Tabela 48: Rezultat poizvedbe primera 6.3.2.4.31

20 Janko Novak
30 Tine Jaklié

6.4 QBE

QBE (Query by example) je enostaven grafi¢ni poizvedovalni jezik, ki v ozadju nase poizvedbe
preslika v SQL. QBE bo na kratko predstavljen z uporabo orodja MS Access, ki je podrobneje opisano
tudi v poglavju 8.4.

Poizvedbo nad podatkovno bazo trgovine prikazujejo naslednji primeri. Poizvedbo v MS Accessu
lahko kreiramo z uporabo ukaza Create ->QueryDesign.

Primeri v nadaljevanju so izdelani nad podatkovno bazo z naslednjo relacijsko shemo:

Trgovina (ID_trgovine, ime_poslovalnice, naslov, telefon, #posta)
Posta (postna_stevilka, naziv poste)

Zaposleni (ID_zaposlenega, ime, priimek, polozaj, naslov, #posta)
Postavka (ID_postavke, #racun, #koda, kolicina)

Racun (st_racuna, datum, #blagajnik, vrsta_placila, #poslovalnica,...)
Izdelek (koda, naziv, klasifikacija,opis, cena, stopnja DDV)

110

Slika 33: Delovna povrsina za kreiranje QBE poizvedb orodja MS Access

Trgovina Posta
* *
% ID_trgovine L ¥ postna_stevilka
ime_poslovalnice naziv_poste
naslov
telefon
posta =
Field: |ID_trgovine ime_poslovalnice posta naziv_poste
Table: |Trgovina Trgovina Trgovina Posta
Sort: Ascending
Show: v v b J

Criteria: |
or:

Delovno povrsino sestavljata zgornji in spodnji del. Na zgornji del dodamo tabele, nad katerimi
Zelimo izdelati poizvedbo. Na spodniji del, ki je oblikovan kot preglednica, pa nato »nanasamo« naso
poizvedbo. Preglednica vsebuje naslednje osnovne vrstice:

e Field (polje): dodajamo stolpce iz zgoraj prikazanih tabel.

e Table (tabela): prikazuje tabelo, iz katere je posamezni stolpec.

e Sort (urejenost): izberemo sortiranje po dolo¢enem stolpcu (narascajoce ali padajoce).

e Show (prikaz): s kljukico oznacimo stolpec, ¢e ga Zelimo izpisati.

e Criteria (pogoji): vstavimo pogoje. Ce sta dva pogoja v isti vrstici, je med njima operator IN.

e Or (pogoji loceni z ali): dodamo pogoje, locene z operatorjem ali.

6.4.1 Enostavne poizvedbe

6.4.1.1 Primer izpisa vseh trgovin

S poizvedbo Zelimo izpisati vse trgovine s pripadajoCimi nazivi post. V tabeli Trgovina so shranjeni
podatki o trgovini in postna Stevilka. V tabeli Posta pa postna Stevilka in naziv poste oz. ime kraja
(npr. 8000 Novo Mesto). Tabeli Trgovina in Posta sta povezani preko postne sStevilke in sicer:
Trgovina.posta=Posta.postna_stevilka. Poste.

O trgovini Zelimo izpisati: Id_trgovine, ime_poslovalnice, posta (iz tabele Trgovina) in naziv_poste
(iz tabele Posta), zato jih povleemo v poizvedbo. V vrstici Show morajo biti ti stolpci oznaceni s
kljukico. Ce Zelimo, da bo izpis urejen po postni tevilki, v stolpcu posta izberemo ukaz za sortiranje
(izbrali smo Ascending za narascajocCe sortiranje). Poizvedbo prikazuje slika (Slika 33). Tabela 49 pa
prikazuje rezultat poizvedbe.

111

Tabela 49: Rezultat poizvedbe primera 6.4.1.1

Oznaka trgo - | ime_poslovalnice - posta ~ | naziv_poste -
g Tretja 1002 Ljubljana
2 Zavogalom 2000 Maribor
1 Muca copatarica 3000 Celje
*

6.4.1.2 Primer dodajanja enega pogoja na poizvedbo
Zelimo izpisati podatke le o trgovinah iz Celja. Pogoj dodamo v stolpec naziv_poste.

Slika 34: Poizvedba - izpis vseh trgovin iz Celja

Field: [ID_trgovine ime_poslovalnice posta naziv_poste
Table: | Trgovina Trgovina Trgovina Posta
Sort: Ascending
Show:
Criteria: fCelje”

on

410m
Tabela 50: Rezultat poizvedbe 6.4.1.2

% trgmrina" =_?|:| mu:ampatarica"-.._
Oznaka trgo - | ime_poslovalnice - posta * naziv_poste -
ﬂ Muca copatarica 3000 Celje

#*

6.4.1.3 Primer uporabe vec pogojev (IN)

Zelimo izpisati podatke o trgovinah z nazivom Muca copatarica iz Celja. Dodamo $e pogoj v stolpec
ime_poslovalnice.

Slika 35: Poizvedba - podatki o trgovinah Muca copatarica iz Celja

Field: |ID_trgaovine ime_poslovalnice posta naziv_poste
Table: |Trgovina Trgovina Trgovina Posta
Sort: Ascending
Show:
Criteria: IMuca copatarica’ “Celje”

Ker je v bazi le ena trgovina iz Celja je izpis enak predhodnemu (Tabela 50).
6.4.1.4 Primer uporabe ve¢ pogojev (ALI)

Zelimo izpisati podatke o trgovinah, ki so iz Celja ali Maribora. Oba pogoja damo v stolpec
naziv_poste. Rezultat poizvedbe prikazuje tabela (Tabela 51).

112

Slika 36: Poizvedba - podatki o trgovinah iz Celja ali Maribora

Field: |ID_trgovine ime_poslovalnice posta naziv_poste
Table: |Trgovina Trgovina Trgavina Posta
Sort: Ascending
Shows:
Criteria: “Celje”
or: rMaribor'

Tabela 51: Rezultat poizvedbe primera 6.4.1.4
§| trgmrina.-" ﬂj mucampataﬁcé"‘:._

Oznaka trgo - | ime_poslovalnice - posta - | naziv_poste -
E Zavogalom 2000 Maribor
1 Muca copatarica 3000 Celje

6.4.2 Uporaba agregatnih funkcij

Tudi QBE omogoca izvajanje agregatnih funkcij, ki smo jih spoznali Ze pri jeziku SQL. Za delo z
agregatnimi funkcijami moramo vkljuciti dodatno vrstico s klikom na ukaz Totals.

6.4.2.1 Primer uporabe agregatne funkcije COUNT

Zelimo izpisati, koliko postavk (vrstic racuna) je vseboval posamezen ra¢un. Podatke zato grupiramo
po Stevilki racuna (stolpec racun). Znotraj vsake grupe pa prestejemo postavke (ID_postavke).
Ugotovimo, da je imel racun s Stevilko 1 tri postavke, racun s stevilko 2 pa eno postavko.

Slika 37: Poizvedba — prestej Stevilo postavk na posameznem racunu

Postavka
*
7 ID_postavke
racun

koda
kolicina
[T
Field: |racun ID_postavke
Table: | Postavka Postavka
Total: | Group By Count E
Sort:
Show:

Criteria:
ar:

Tabela 52: Rezultat poizvedbe primera 6.4.2.1

=2) trg::nrina."'i -3 muca copatarica

racun ~ | CountOflD_postavke -

1~ 3

2 1

113

6.4.2.2 Primer izrauna izraza in uporaba agregatne funkcije SUM
Zelimo izraunati skupni znesek vsakega ra¢una. Na raéunu imamo eno ali ve¢ postavk. Pri vsaki
postavki je zapisana prodana koli¢ina. Cena artikla pa se nahaja v tabeli Artikel.

Najprej skusajmo izra¢unati vrednost posamezne postavke. To storimo tako, da dodamo nov
stolpec, v katerega zapiSemo izraz: Znesek: [cena]*[kolicina], pri cemer sta kolicina in cena atributa
tabel Postavka oz. Artikel.

Slika 38: Poizvedba —izra¢un vrednosti posamezne postavke
QBE sqQL
SELECT Postavka.racun, Postavka.koda,

Postavka Artikel

. . o Postavka.kolicina, Artikel.Cena, [kolicina]*[cena]
7 ID_postavke g ? koda AS Znesek
racun / naziv i
koda = Klasifikacia | = FROM Artikel INNER JOIN Postavka ON
kolicina gE:ﬂ Artikel.koda = Postavka.koda;
Stopnja DDV | ¥

Field: | racun koda kolicina |Cena |Znesek: [kolicinal*[cenal [=

TFETEI: Postavka | Postavka Postavkal Artikel
otall

Sort:

Show:
Criteria:
or:

Expression

Tabela 53: Rezultat poizvedbe primera 6.4.2.2 (izracun vrednosti posamezne postavke)

EI trgovina ﬁj Queryl |'§:| Skupni znesek racuna
racun - koda -~ | kolicina -~ Cena - Znesek -
il ~ | 1234a-Lego kocke 5 35,00 € 175
2 1234a-Lego kocke 30 35,00 € 1050
1 6543g-Motorno olje 1 15,00 € 15
1 bed56g-Sobno kolo 7 250,00 € 1750

Sedaj pa bomo vrednosti postavk na istem racunu le Se sesteli. Izpisali bomo le Stevilko racuna ter
skupno vrednost, zato stolpce, ki smo jih prej dodali, odstranimo. Dopolnimo poizvedbo z agregatno
funkcijo sestevanja (Sum) na pravkar kreiranemu stolpcu Znesek. Tako dobimo koncni rezultat.
Ogledamo si Se SQL stavek, ki se kreira v ozadju.

114

Slika 39: Poizvedba —izra¢un skupnega zneska posameznega racuna

QBE sQL
SELECT Postavka.racun, Sum([kolicina]*[cena]) AS
Postavka Artikel Znesek
* 1 y By - FROM Artikel INNER JOIN Postavka ON Artikel.koda =
¥ ID_postavke _/_ koda Postavka.koda
racun naziv
koda klasifikacija | = GROUP BY Postavka.racun;
kalicina opis
Cena
Stopnja DDV | ™

Field: | racun Znesek: Sum([kalicina)*[cena])
Table: | Postavka
Total: | Group By Expression El
Sort:
Show: E

Criteria:

Tabela 54: Rezultat poizvedbe primera 6.4.2.2 (izracun skupnega zneska posameznega racuna)
2] trgovina | -3 Quen |§J Skupni znesek |

racumn - Znesek -
i~ 1940
2 1050

Se vet primerov poizvedb se nahaja v poglavju 8.4.2 Poizvedovanje z uporabo jezika QBE.

6.5 Izvajanje in optimizacija poizvedb

6.5.1 O izvajanju poizvedb

Cilj izvajanja poizvedbe je transformacija poizvedbe, zapisane v visokonivojskem poizvedovalnem
jeziku (npr. SQL-u) v pravilno in ucinkovito strategijo za izvedbo poizvedbe, v nizkonivojskem jeziku
(ki implementira relacijsko algebro) in izvedba strategije za pridobitev potrebnih podatkov. Izvedba
poizvedbe (ang. Query processing) vkljuCuje dekompozicijo (analizo in validacijo sintakse)
poizvedbe, optimizacijo, generiranje kode in izvedbo poizvedbe.

115

Slika 40 prikazuje faze izvedbe poizvedbe (povzeto po Connolly in Begg, 2005, str. 631-683).

Poizvedbo, zapisano v visokonivojskem jeziku, je mozno transformirati v nizkonivojsko poizvedbo
na razlicne nacine. Z aktivnostjo optimizacije poizvedbe Zelimo najti najucinkovitejSo strategijo za
izvedbo poizvedbe, z vidika porabe razli¢nih racunalniskih virov. Glavni cilj optimizacije je, da se
poizvedba izvede ¢im hitreje.

V splosnem lo¢imo dinamicno in stati¢no optimizacijo, ki imata vsaka svoje prednosti in slabosti,
zato se v praksi navadno uporablja hibridni pristop. Za dinami¢no optimizacijo je znacilno, da se
dekompozicija in optimizacija poizvedbe ponovno izvedeta pred vsako izvedbo poizvedbe. Prednost
je, da se optimizacija izvede na aZurnih podatkih statistke podatkovne baze. Slabost pa je cas,
potreben za vsakokratno dekompozicijo in optimizacijo. Znacilnost stati¢ne optimizacije je, da se
dekompozicija in optimizacija izvedeta enkrat za posamezno poizvedbo, s ¢imer se odpravi Cas
vsakokratne izvedbe teh aktivnosti pred izvedbo poizvedbe, kar pri pogostem zaganjanju istih
poizvedb lahko pomeni precejSen prihranek casa. Slabost tega nacina pa je, da je poizvedba
optimizirana glede na statistiko, ki je bila azurna v ¢asu optimizacije, zato poizvedba ¢ez nekaj ¢asa
lahko ni ve¢ optimalna. Hibridni pristop je, da se optimizacija izvede in shrani na zaetku vsake seje.

Slika 40: Faze izvedbe poizvedbe

Poizvedba v visokonivojskem
jeziku (npr. SQL)

L -

Deko_rn pozichia Sisternski katalog
poizvedbe

_ lzraz relacijske algebre
2
=

@ JU—

R Y <
B ..

o S -

a Optimizacija L
2z poizvedbe Statistika PB
i ’

(103 e

1 Plan izvedbe poizvedbe

Y
Generiranje kode
Generirana koda

@
= S

g v <
= .

2 sz_fa janje PR
a poizvedbe
& Izhod(rezultat) izvedene poizvedbe

b

Vir: Connolly in Begg, 2005, str. 634.

116

6.5.2 Dekompozicija poizvedbe

Dekompozicija poizvedbe je prva faza izvedbe poizvedbe. Cilj je pretvorba visokonivojske poizvedbe
v ukaze relacijske algebre ter preverjanje sintakticne in semanti¢ne pravilnosti. Dekompozicija
obsega vec aktivnosti.

Prva aktivnost je preverjanje sintakse visokonivojskega jezika (uporaba rezerviranih besed, tipov in
podobno kot prevajalniki to preverjajo pri drugih programskih jezikih) ter preverjanje obstoja relacij
in atributov v sistemskem katalogu podatkovne baze (torej ali smo v poizvedbi pravilno zapisali
imena tabel in stolpcev). Poglejmo primer poizvedbe nad tabelo Clan, iz domene knjiznice, z
naslednjo relacijsko shemo:

Clan (St_izkaznica, Ime, Priimek, Naslov, E_naslov, Datum_placila, #Vrsta_clana).

S poizvedbo Zelimo izpisati vse ¢lane (St_izkaznice, Ime, Priimek), ki imajo status Studenta. Pravilna
poizvedba je:

SELECT ST_izkaznica, Ime, Priimek

FROM Clan

WHERE Vrsta_clana='Student'
V primeru napacnega zapisa rezerviranih besed (npr. SELCT) dobimo nasledniji izpis napake: invalid
SQL statement. Enako napako dobimo tudi v primeru uporabe dvojnih narekovajem namesto
enojnih. To napako dobimo tudi v primeru uporabe napacnih operatorjev glede na tip podatkov, na
primer:

SELCT ST_izkaznica, Ime, Primek

FROM Clan

WHERE Vrsta_clana> "Student"

Operatorja > in < namre¢ ne moremo uporabljati v povezavi z atributi, ki hranijo nize znakov.

Ce se npr. zmotimo pri navedbi atributa Priimek, dobimo izpis napake: "PRIMEK": invalid identifier,
saj analizator ugotovi, da atributa s takinim imenom ni v sistemskem katalogu. Ce pa se zmotimo
pri navedbi imena tabele in zapisemo Clan namesto Clan, dobimo izpis napake: table or view does
not exist.

Ce je poizvedba sintakti¢no pravilna se prevede v ukaze relacijske algebre, navadno v obliko drevesa,
ki je najprimernej$a za nadaljnje aktivnosti. Imejmo tabeli Zaposleni (ID_zap, Ime, Priimek, Pozicija,
#IDPosl) in Poslovalnica (IDPosl, Naziv, Naslov, Mesto) ter relacijo, da zaposleni dela v natanko eni
poslovalnici (glej tudi Slika 48). Zelimo izpisati vse vodje poslovalnic iz Ljubljane. SQL stavek se glasi:
SELECT *
FROM Zaposleni inner join Poslovalnica on Zaposleni.IDPosl= Poslovalnica.IDPosl
WHERE (Zaposleni.Pozicija='Vodja') AND (Poslovalnica.Mesto='Ljubljana’)

Primer drevesa za navedeno poizvedbo prikazuje Slika 41. Poizvedba se izvede od listov proti korenu
poizvedbe.

Slika 41: Primer drevesa relacijske algebre

117

P<lz.1DPosl=p.IDPos! Koren

6 e) 6) Vmesne
z.Pozicija="Vodja' p.Mesto="Ljubljana’ ..
operacije
Zaposleni Poslovalnica Listi

Semanti¢na analiza skuSa najti nepravilnosti, npr. poizvedbe, ki nikoli ne vrnejo rezultata.
Poizvedba, ki vrne vse Clane, ki so dijaki ali Studenti, je semanticno pravilna.

SELECT ST_izkaznica, Ime, Priimek
FROM Clan
WHERE Vrsta_clana='Dijak' OR Vrsta_clana='Student’

Podobna poizvedba, v kateri zamenjamo le operator OR z operatorjem ALl, pa semanti¢no ni
pravilna, saj ima vsak ¢lan dodeljeno natanko eno vrsto ¢lana. Ne obstaja ¢lan, ki bi bil Student in
dijak hkrati. Primer sintakticno nepravilne poizvedbe:

SELECT ST_izkaznica, Ime, Priimek

FROM Clan
WHERE Vrsta_clana='Dijak' AND Vrsta_clana='Student’

Obvladovanje semanti¢nih nepravilnosti se med SUPB-ji precej razlikuje.

Nadalje se izvedejo Se poenostavitve poizvedbe, pri cemer se uporabijo pravila Boolove algebre pri
rabi operatorjev in, ali in negacije. Preverijo se tudi dostopne pravice uporabnika do elementov
poizvedbe ter upostevajo integritetne omejitve. Konc¢na aktivnost je Se prestrukturiranje poizvedbe.

6.5.3 Optimizacija poizvedbe

Optimizacija poizvedbe (ang. Query optimization) je aktivnost izbire najucinkovitejSe strategije za
izvedbo poizvedbe. Pri optimizaciji poizvedbe SUPB uporablja statistiko podatkovne baze (npr.
podatke o relacijah, atributih, indeksih).

Za optimizacijo poizvedb se uporabljata dve glavni tehniki: hevristicna tehnika in tehnika ocene
stroskov. Prva tehnika uporablja hevristi¢na pravila, ki omogocajo doloditev optimalnega vrstnega
reda izvajanja operacij relacijske algebre. Druga tehnika omogoca oceno porabe virov, predvsem
dostopa do diska zaradi potrebe po branju podatkov in izbiro strategije, kjer je teh dostopov
najmanj. Pri tem uporablja statisticne podatke o podatkih v podatkovni bazi. SUPB Oracle za
optimizacijo uporablja obe vrsti tehnik.

118

Hevristi¢na tehnika omogoca pretvorbo manj ucinkovitih izrazov relacijske algebre v bolj u¢inkovite.
Tako lahko na primer ugotovimo, da je u€inkoviteje najprej izvesti selekcijo v vsaki posamezni tabeli
in nato rezultate povezati s stikom, kot obratno. Ker obstaja transformacijsko pravilo, ki omogoca
zamenjavo operacij selekcije in stika, jih lahko izvedemo v vrstnem redu, ki je z vidika izvedbe
ucinkovitejsi. Pri optimizaciji se tako lahko med drugim uporabijo naslednje heuvristi¢ne strategije:
e lzvedi operacije selekcije ¢im bolj zgodaj: selekcija zmanjsa Stevnost relacije (to je Stevilo
n-teric relacije) ter s tem zmanjsa nadaljnje procesiranje podatkov.
e lzvedi operacije projekcije ¢im bolj zgodaj: projekcija zmanjsa stopnjo relacije (to je Stevilo
stolpcev) ter s tem zmanjsa nadaljnje procesiranje podatkov.
e Samo enkrat izvedi enake izraze: rezultati se shranijo in ponovno uporabijo.

Natancen opis vseh transformacijskih pravil in vseh strategij presega obseg uc¢benika in si jih bralec
lahko prebere v (Connolly in Begg, 2005, str. 640-644).

Tehnika ocene stroskov temelji na statisticnih podatkih o podatkovni bazi:
e Stevnost vsake osnovne relacije,
e Stevilo blokov za hranjenje relacije,
e Stevilo razlicnih vrednosti vsakega atributa,
e Stevilo nivojev vsakega vecnivojskega indeksa itd.

Pri tem je pomembno, da so ti podatki v ¢asu ocene stroskov ¢im bolj svezi. Vzdrzevanje azurnih
statisti¢nih podatkov predstavlja dodatni problem. V primeru, da se statisti¢ni podatki osvezijo ob
vsakem dodajanju, brisanju ali aZzuriranju podatkovne baze, to seveda bazo dodatno obremenjuje in
negativno vpliva na njeno odzivnost v ¢asu vecjih obremenitev. Splosno sprejet pristop je
osveZevanje statisticnih podatkov v ¢asu, ko je podatkovna baza najmanj obremenjena, npr. ponodi.
Mozen pristop je tudi, da uporabnikom prepustimo odgovornost za prozenje osveZevanja statistike,
kadar se jim to zdi potrebno.

Na podlagi statisti¢nih podatkov je mozno oceniti, kakSne stroske predstavlja izvedba posamezne
operacije relacijske algebre (selekcije, projekcije, stika...). Pri tem kot stroske praviloma ocenjujemo
Stevilo blokov, ki jih je potrebno z diska prenesti v glavni pomnilnik, saj je to najpocasnejSa operacija.
Nadalje je ocena stroskov odvisna tudi od nacina urejenosti posamezne relacije. Za operacijo
selekcije so strategije oz. ocena stroskov razlicne, glede na fizicno organiziranost podatkovne baze.
Odvisno od fizicne organiziranosti tako za iskanje n-teric, ki ustrezajo pogoju, uporabimo: zaporedno
iskanje (neurejena datoteka, brez indeksa), binarno iskanje (urejena datoteka brez indeksa), pogoj
enakosti na primarnem kljuu, pogoj neenakosti na primarnem kljucu, pogoj enakosti na
sekundarnem indeksu (tipa cluster, B+-drevo...,) itd., za katere je ocena strosSkov seveda razli¢cna.
Podobno obstajajo razlicne strategije za druge operacije relacijske algebre.

Nadalje SUPB potrebuje tudi ucinkovit algoritem za iskanje najucinkovitejSe strategije. V primeru
kompleksnejse poizvedbe je problem lahko dokaj zahteven. V primeru, da imam poizvedbo nad
tremi relacijami (n=3), lahko stik med njimi realiziramo na 12 razli¢nih nacinov, za n=4 pa ze na 120
nacinov. V splosnem je za n relacij (2(n - 1))!/(n - 1)! razli¢nih moZnosti realizacije stika med njimi.
Podrobnosti o posameznih strategijah in algoritmih za iskanje najucinkovitejSe strategije izvajanja
(ang. execution strategy) si bralec lahko prebere v (Connolly in Begg, 2005, str. 647-673).

119

Vprasanja za ponavljanje

L o0oNU A WNRE

R R R R R R R R R R
O 00 NO U WNRELR O

Katere jezike za delo z relacijsko bazo poznate?

Kaj je SQL?

Katere so prednosti in katere slabosti standarda SQL?
Kateri dve skupini ukazov jezika SQL poznate?

Katere ukaze vsebuje skupina DDL in ¢emu so namenjeni?
Katere ukaze vsebuje skupina DML in ¢emu so namenjeni?
Najmanj katera dva dela mora obsegati SELECT stavek?
Katere ukaze za delo z mnozicami vsebuje SQL?

Kaj je QBE?

. Kako sestavimo poizvedbo v jeziku QBE?

. V kateri jezik se pred izvedbo poizvedba QBE prevede?

. Katere agregatne funkcije poznate? Kaj omogocajo?

. Katere faze obsega izvedba poizvedbe v SUPB?

. Kaj je cilj dekompozicije poizvedbe? Katere znacilnosti poizvedbe se v tej fazi preverijo?
. Katere aktivnosti se v okviru faze dekompozicije Se izvedejo?

. Kaj je cilj optimizacije poizvedbe?

. Na podlagi ¢esa deluje hevristicni pristop? Ali poznate katero od strategij tega pristopa?
. Na podlagi ¢esa deluje pristop ocene stroskov?

. Katere statisti¢cne podatke navadno vsebuje sistemski katalog podatkovne baze?

Naloge

6.3.1 Nad podatkovno bazo Studentskega IS (glej) izdelajte naslednje poizvedbe nad eno tabelo z
uporabo jezika SQL DML:

a. Vsizapisi in atributi iz tabele Predavatel;.

Vsi zapisi in atributi iz tabele Predmet.

Naziv, Ime in priimek iz tabele Predavatel;.

Vpisna $t, em3So, datum rojstva, skupaj naslov in kraj iz tabele Student.

Predavatelji, ki se za¢nejo na ¢rko M.

Studentje, ki Zivijo v Ljubljani in so rojeni po 1.1.1995.

Predmeti, ki se izvajajo v prvem ali drugem letniku v zimskem semestru, urejeni naras¢ajoce

@m0 a0 o

po nazivu.

h. Studentje, rojeni med 1.1.1990 in 1.1.2000 urejeni po datumu rojstva padajoce.

i. Studentje, ki imajo vpisan naslov in ima njihova vpisna $tevilka 10 znakov, urejeni po
imepriimek.

120

6.3.2 Nad podatkovno bazo studentskega IS (glej Slika 31) izdelajte naslednje poizvedbe nad
dvema ali vec tabelami z uporabo jezika SQL DML:

a.

e.

Nazivi predmetov, nazivi ter imena in priimki predavateljev, ki jih izvajajo, urejeno po nazivu
predmeta in imenu, priimku predavatelja.

Nazivi predmetov, nazivi ter imena in priimki predavateljev, ki jih izvajajo, urejeno po nazivu
predmeta in imenu, priimku predavatelja — TUDI ¢e predmet nima predavatelja!

Nazivi predmetov, nazivi ter imena in priimki predavateljev, ki jih izvajajo, urejeno po imenu,
priimku predavatelja — TUDI ¢e predavatelj nima predmeta!

Seznam vseh Studentov, s pripadajo¢imi ocenami za opravljene predmete, nazivi predmetov
in predavatelji.

Enako kot d, vendar samo ocene predmetov prvega letnika, ki imajo oceno med 7 in 9.

6.3.3 Nad podatkovno bazo studentskega IS (glej Slika 31) izdelajte naslednje poizvedbe z uporabo
agregatnih funkcij z uporabo jezika SQL DML:

a.

Sm o o0 T

Povprecje ocen predavanj za vse Studente.

Povprecje ocen predavanj za vse Studente prvega letnika, ki vaj nimajo opravljenih.

Koliko $tudentov ima kak$no oceno (Ocena, Stevilo $tudentov).

Povprecna ocena po letnikih — samo pozitivne ocene.

Samo letniki, kjer imajo Studentje povprecno oceno visjo od 8.

Seznam predmetov s predavateljem, pri katerih ima vsaj en Student oceno visjo od 8.
Seznam Studentov, ki imajo vsaj en predmet v zimskem semestru.

Seznam Studentov, kiimajo povprecno oceno visjo od povprecne ocene celotne Sole — Stejejo
se samo pozitivhe ocene.

6.3.4 Kreirajte fizicno podatkovno bazo publikacij na podlagi relacijskega modela(Slika 30) z
uporabo stavkov SQL DDL:

a.

b.
C.
d

Kreirajte tabeli Author in Publication z atributi.
Ne pozabite kreirati omejitev primarnih in tujih kljucev.

Kreirajte indekse na stolpce name, birth_date in gender tabele.
Z uporabo SQL DDL stavka DROP TABLE zbrisite tabeli Author in Publication.

6.4.1 Kreiraj podatkovno bazo trgovskega podjetja z orodjem MS Access kot je prikazana na sliki
(Slika 42) in vnesi nekaj podatkov.

121

Slika 42: Relacijski model trgovskega podjetja v orodju MS Access

Postavka

7 ID_postavke
racun
koda
kolicina

zaposleni
% ID_zaposlenega

ime

priimek

polozaj

naslov

posta

Racun

7 st_racuna s
datum
blagajnik
vrsta_placila
poslovalnica
skupaj_brez_po
popust_v_odstc o

Artilel
¥ koda

naziv

klasifikacija

opis

Cena

Stopnja DDV

Posta
? postna_stevilka
naziv_poste

Trgovina
¥ ID_trgovine
ime_poslovalnice
naslov
telefon
posta

6.4.2 S pomocjo graficnega poizvedovalnega jezika QBE (Query by example) in orodja MS Access
nad podatkovno bazo iz predhodne naloge izdelaj naslednje poizvedbe in si pri vsaki oglej
pretvorbo v SQL:

Izpisi vse trgovine.

IzpiSe podatke o trgovini "Muca copatarica".

IzpiSi vse zaposlene.

IzpiSi Stevilo vseh zaposlenih v tabeli Zaposleni.

IzpiSi vse blagajnike (ime, priimek, polozaj) iz tabele Zaposleni.

IzpiSi vse zaposlene (ime, priimek, naslov,posta,Posta.naziv_poste) iz Novega mesta.
IzpiSi vse zaposlene, katerih priimek se zacne na ¢rko N.

IzpiSi vse zaposlene, ki imajo v priimku ¢rko .

IzpiSi vse zaposlene, ki imajo v priimku kot drugo ¢rko o.

j- lzpisi Stevilo vseh artiklov.

k. IzpiSi Stevilo razlicnih artiklov za vsak racun (tabeli Racun, Postavka). Potrebno je vkljuciti
vrstico Vsote.

S®m o a0 T W

I. IzpiSi skupno koli¢ino prodanih artiklov za vsak rac¢un (tabli Racun, Postavka).

m. Za vsakega blagajnika izpiSi prodano koli¢ino izdelkov. Uredi tako, da bo najprej izpisan
blagajnik, ki je prodal najvec (po koli¢ini od najvecje do najmanjse).

n. lIzpisi blagajnika (ime, priimek), ki je prodal ve¢ kot 15 izdelkov (koli¢ina).

0. Zavsakega blagajnika izpisi prihodek od prodaje.

122

7 Objektna podatkovna baza

S pojavom in hitro uveljavitvijo objektno usmerjene tehnologije v zaCetku devetdesetih let, ki danes
prevladuje predvsem med programskimi jeziki (Java, C#), so se pojavile tudi prve ideje o novem,
objektnem pristopu tudi na podrocju podatkovni baz. Objektni SUPB so se sprva uveljavili v
inZenirstvu in nacrtovanju ter v zadnjem c¢asu tudi na podrocjih finan¢nih in telekomunikacijskih
reSitev. Trg objektnih SUPB pa je v primerjavi z relacijskimi SUPB-ji Se vedno majhen, ¢eprav so mu
v devetdesetih letih napovedovali zelo hitro rast. Objektne baze so danes Se vedno prej izjema kot
pravilo, je pa opaziti tendenco vpeljevanja posameznih objektnih konceptov in resitev v obstojece
relacijske sisteme za upravljanje podatkovnih baz s strani vseh najpomembnejsih ponudnikov
(Oracle, IBM, Microsoft itd) (Lahajnar in RoZzanec, 2000). Eden najbolj znanih objektnih SUPB-jev pa
je ObjectStore.

7.1 Objektni SUPB

Znacilnosti objektnega SUPB (O-SUPB) so bile definirane Ze leta 1989 z manifestom (Object-Oriented
Database System Manifesto). V njem je bilo zapisanih trinajst funkcionalnosti, ki jih mora podpirati
vsak O-SUPB. Izhajajo iz dveh podrodij in sicer:

e sistem mora biti objektno usmerjen in

e mora biti sistem za upravljanje s podatkovno bazo.

Tabela 55: Funkcionalnosti, ki jih mora podpirati vsak objektni SUPB

Znacilnosti objektne usmerjenosti SUPB znacilnosti

Podpora kompleksnim objektom Zagotavljanje trajnosti podatkov
Podpora objektni identifikaciji (OID) Obvladovanje velikih koli¢in podatkov
Enkapsulacija (le dostopnost vmesnika, | Podpora so¢asnemu dostopu

ne pa tudi podatkov in implementacije | uporabnikov
metod, ki so skriti)

Podpora tipom ali razredom Sposobnost obnove po podatkovnih in
sistemskih nesre¢ah

Dedovanje atributov in metod tipov ali | Enostaven nacin za poizvedovanje po
razredov od nadtipov ali nadrazredov podatkih v bazi

Podpora dinamiénemu povezovanju
(ve¢ operacij z istim imenom, a
drugacnimi tipi objektov)

Razsirljivost mnozZice podatkovnih tipov

DML mora biti racunsko popoln
Vir: Connolly in Begg, 2010, str. 826.

123

Za razvoj objektnega SUPB z navedenimi funkcionalnostmi je moZno uporabiti razlicne strategije
(Connolly in Begg, 2010, str. 828):

e razsiritev objektno usmerjenega programskega jezika s funkcionalnostmi SUPB:
funkcionalnosti SUPB se dodajo objektnim jezikom kot so Smalltalk, C++, ali Java. Primer
takSnega SUPB je izdelek GemStone, ki razsirja navedene tri objektno usmerjene programske
jezike.

e Uporaba razsirljivih objektno usmerjenih knjiznic s funkcionalnostmi SUPB: gre za nekoliko
drugacen nacin razSiritve objektno usmerjenih programskih jezikov. Dodatne knjiznice
omogocajo trajnost, podporo transakcijam, podporo sofasnemu dostopu, varnostne
mehanizme itd. Primera takSnega SUPB sta izdelka Versant in ObjectStore.

e Razsiritev obstojecega jezika za delo s SUPB z objektno usmerjenimi zmogljivostmi:
standard SQL:1999 vsebuje objektne razsiritve. Objektni standard ODMG (Object Data
Management Group) definira objektni SQL (Object SQL). Izdelki podjetij Ontos and Versant
ter Stevilni drugi objektni SUPB-ji vsebujejo objektni SQL.

e Razvoj novega podatkovnega modela in jezika: radikalni pristop, ki od zacetka v celoti
razvije objektno usmerjeni jezik in SUPB z objektno usmerjenimi znacilnostmi.

7.2 Nacrtovanje objektne podatkovne baze

Razli¢ni avtorji so predstavili svoje metode in diagramske tehnike za nacrtovanje in analizo razvoja
informacijskih sistemov, med katerimi so bile najvecje pozornosti delezne OMT (Object Modeling
Techniques), Object Oriented Analysis and Design in Objectory. Osnoven problem, da se informatiki
niso bolj mnozicno odlocali za njihovo uporabo, je bila relativna mladost tehnik, odsotnost
standardiziranih konceptov in enotnega procesa nacrtovanja. V Zelji po Sirsi uveljavitvi objektnega
modeliranja so trije avtorji (Rumbaugh, Booch in Jacobson) staknili glave skupaj, pobrali najboljse iz
svojih metod in nastal je UML (Unified Modeling Language).

UML lahko definiramo kot jezik za specifikacijo, vizualno modeliranje, konstrukcijo in dokumentacijo
celovitih informacijskih sistemov ali njihovih posameznih komponent. Njegov temeljni cilj je
zagotoviti uporabnikom standardiziran, konceptualno mocan in razsirljiv opisni mehanizem za prikaz
vseh mozZnih vidikov obravnavanega sistema. Uporaba diagramskih tehnik jezika UML ni pogojena s
sledenjem nekemu vnaprej definiranemu procesu razvoja informacijskih sistemov, temvec odlocitev
prepus¢a samemu uporabniku, pri ¢emer pa je vseeno priporocljivo upostevanje splosno znanih
nacel razvoja informacijskih sistemov kot so iterativnost procesa, inkrementalni razvoj, ponovna
uporabljivost itd.

Za nacrtovanje relacijskih podatkovnih baz sta se uveljavila model ER in kasneje razsirjen model ER,
ki je vpeljal koncept generalizacije. Temeljni problem uporabe modela ER izvira iz njegove morda
najvecje prednosti, preprostosti. Kot samo ime pove je model ER zasnovan na vsega dveh osnovnih
konceptih (entiteti in razmerju), s katerima ne moremo vedno adekvatno predstaviti podatkov in
njihove medsebojne odvisnosti v vse bolj obseznih in zapletenih informacijskih sistemih.

Ce je model ER zaradi svoje bogate tradicije $e vedno nadvse uporaben pri nacrtovanju relacijskih
podatkovnih baz, pa se zadeve drasticno spremenijo v kolikor nameravamo implementacijo

124

programske resitve zasnovati na objektni ali objektno-relacijski podatkovni bazi. V tem primeru
model ER povsem odpove, saj ne vsebuje moZnosti predstavitve operacij in drugih konceptov
znacilnih za objektno tehnologijo.

Alternativa razlicnim diagramskim tehnikam modela ER je UML-ov diagram razredov. Diagram
razredov sluzi za objektno modeliranje staticne strukture sistema, svoje korenine pa ima prav v
modelu ER. Sicer pa danasnja razli¢ica diagrama razredov jezika UML temelji na diagramu razredov

metode OMT z dodanimi elementi drugih objektnih metod (Fowler, 1997).

V nadaljevanju je predstavljena primerjalna analiza modela ER z diagramom razredov jezika UML na
prakti¢nih primerih uporabe (povzeto po Lahajnar in RoZanec, 2000).

7.2.1 Razred

Slika 43: Poenostavljen ER model prejetih racunov

PARTNER (#) ELEMENT (#)
#0 SIFRA #0 SIFRA
o NAZIV oNAZIV
oTR 0 VRSTA ELEMENTA
T I
} PARTNER FK | ELevent Fx
RACUN_DOBAVITELJA (#) RACUN_DOB_POSTAVKA (#)
#0RACUN #*RACN
#0LETO #*LETO
#0 ORG_ENOTA
| #* ORG_ENOTA
g m¥m_m #* SIFRA_ELEMENTA
oL 1\ 0 KOLICINA
SIFRA_PARTNERJIA - — — — — — N 0 STROSKOVNO_MESTO
o %I]?BJE_KNJIZENJA RACUN_DOBAVITELJA FK o S’TROSKO\/NLNOS|LEO
0 DAVENO_OBDOBJE 0 VRSTA_STROSKA
0 ST.ORGRACUNA 0 ZNESEK
OZNESEK 0ZNESEK_BREZ_DAVKA
0NAGIN PLAGILA 0 STOPNJA_DAVKA
0 OPIS *KONTO
| KONTO_FK
|
KONTO (#)
#0KONTO
oNAZIV

Temeljni koncept modela ER je entitetni tip, ki predstavlja mnoZico entitet istega tipa in je dolocen
s pripadajocim naborom atributov. Pri tem pod pojmom entiteta razumemo nek objekt, ki obstaja
ali mislimo da obstaja v svetu in ga je moc loCiti od drugih objektov. Entitete delimo na realne
(predstavljajo nek realen objekt, dogodek) in abstraktne (predstavljajo idejo). Atributi predstavljajo
posamezne lastnosti entitet in jih delimo na osnovne atribute (ni jih mogoce nadalje deliti) in
sestavljene (sestavljeni so iz vecjega Stevila osnovnih). Razli¢ne notacije prikazujejo entitetne tipe in
atribute v razlicnih graficnih oblikah (ponavadi v obliki pravokotnika), pri ¢emer velja da mora
entitetni tip vsebovati vsaj naziv, lahko pa tudi nabor atributov in kljuc. Slika 43 podaja primer ER
modela prejetih racunov.

125

Ekvivalentni koncept entitetnemu tipu v diagramu razredov je razred. Razred je v jeziku UML
definiran kot opis mnozice objektov, ki si delijo iste atribute, operacije in metode, povezave ter
vsebino. Predstavljen je s pravokotnikom s tremi lo¢enimi predeli: za naziv in osnovne lastnosti, za
atribute ter za operacije. Atribut UML definira kot poimenovano rezo znotraj razreda, ki opisuje
nabor vrednosti, ki jih posamezen primerek razreda lahko zavzame. Iz navedenih definicij dveh
osnovnih konceptov modela ER in razrednega diagrama je razvidno, da med njima obstaja vec
podobnosti kot razlik, pri ¢emer izstopa koncept operacije. UML definira operacijo kot storitev, ki jo
razred nudi svoji okolici. Operacija torej predstavlja povezavo stati¢ne strukture z dinamiénimi
elementi sistema (procesi in metodami). V nasprotju z razrednim diagramom je model ER striktno
omejen na prikaz stati¢nih struktur brez moznosti vpeljave dinami¢nega vidika, za kar je potrebno
uporabiti druge diagramske tehnike (Muller, 1999, str. 136-149). Slika 44 prikazuje razredni diagram
prejetih racunov.

Slika 44: Poenostavljen razredni diagram prejetih racunov

<<persistent>> <<persistent>>

_ Partner Element
¢Sifra - Integer = 1 &Sifra : Integer = 1
¢Naziv: _Strlng @Naziv : String
&TR : String ¢Vrsta elementa : String
*Preberi partnerja() “Preberi element()

1
1
Paife
0on
<<persistent>> 0-n

Ratun dobaitelja <<persistent>>

oia::unl:tlnteger ;0101 Racun dobavitelja postawka
¢Leto : Integer = ‘
¢Org enota : String éEle!'[l.ent.‘ Integer
¢Datum ratuna : Date ¢Koligina : Integer
¢Datum valute : Date @Konto : String

' Vsebije @Stroskowno mesto : String

&Partner : String N . o
&Obdobje knjizenja : String ¢&Stroskovni nosilec : String

&\Vrsta strodka : String

¢Davéno obdobje : String | 1 0.n &Znesek : Double
gg:é::g‘rgztrl;lae: String ¢Znesek brez davka : Double
eNacin pIé:":iIa " String ¢&Stopnja dawka : Integer
¢Opis : String %Vnesi wstico raguna()

V nesi glavo racunal) %Spremeni wrstico raguna()
%S premeni glavo raéuna() o.n

1
<<persistent>>
Konto

¢Konto : String
¢Naziv : String

®Preberi analiti¢ ni konto()

Podrobnejsa primerjava entitetnih tipov in razredov prinese na plan Se druge, manj opazne razlike.
Te izvirajo iz razlik v zasnovi dveh tehnologij (relacijske in objektne), pri cemer je treba poudariti, da
razredi ne predstavljajo zgolj naborov objektov podatkovne baze kot je to v primeru entitetnih tipov,
temvec gre lahko tudi za objekte, ki nimajo trajnosti, ki pa niso predmet obravnave tega c¢lanka.
Razred oziroma primerek razreda v obliki objekta predstavlja torej splosnejsi koncept od
entitetnega tipa. UML omogoca podrobnejSo specifikacijo kateregakoli gradnika diagrama z
uporabo stereotipa (beseda v dvojnih srednjih narekovajih, praviloma pridana imenu gradnika). V
primeru nacrtovanja podatkovnih baz se imenu razreda doda stereotip <<persistent>>, ki doloca,
da gre za poseben tip razreda za katerega velja, da sistem ohrani stanja njegovih primerkov tudi po

126

prenehanju njihovega obstoja. To pa je vsekakor klju¢na naloga vsakega sistema za upravljanje
podatkovnih baz.

Nadalje gre razlike med entitetnim tipom in razredom iskati v lastnostih, s katerimi dodatno
opisujemo atribute. V primeru entitetnega tipa imamo mozZnost dodatno specificirati atribute, ki
tvorijo identifikator kljuca, ve€vrednostne atribute s predpisovanjem ustrezne Stevnosti ter domene
vrednosti, ki jih atributi lahko zavzamejo. Atributom razreda lahko poleg vseh navedenih lastnosti
pripiSemo Se zacetno vrednost, stereotip in vidljivost. Posebej zanimiva je lastnost vidljivosti, ki
predpisuje pravice in nain dostopa do vrednosti atributa (neomejen dostop v primeru javne
vidljivosti in omejitve v primeru zascitene ali zasebne). Vidljivost je tesno povezana z enim od
osnovnih nacel objektne tehnologije, ograjevanjem. Ograjevanje govori o tem, da je dostop do
podatkov objekta mogoc le preko njegovih metod, dolocenih z ustreznim vmesnikom.

Model ER in razredni diagram razlicno obravnavata identifikator entitetnega tipa in identifikator
objekta. V modelu ER je identifikator definiran kot mnozica atributov, ki enoli¢no dolocajo vsako
posamezno entiteto znotraj entitetnega tipa. V nasprotju z modelom ER razredni diagram ne
vsebuje posebne notacije za prikaz identifikatorja posameznih objektov, saj predpostavlja, da je
identifikator objekta ena izmed njegovih bazi¢nih lastnosti (pravimo, da je identifikator impliciten).
Ce pa Zelimo identifikator tudi eksplicitno prikazati, moramo UML notacijo za atribute razsiriti z
oznako 'OID' (Object identifier), ki pove, da je atribut del identifikatorja.

7.2.2 Asociacija

Drugi bistveni koncept modela ER je razmerje, ki predstavlja skupino istovrstnih povezav in zdruzuje
vse povezave istega tipa med dvema ali veC entitetami. Podobno kot v primeru entitetnih tipov je
prikazovanje razmerja zelo odvisno od izbrane notacije. Chen tako prikazuje razmerje z rombom, v
katerega vpiSemo naziv in ga povezemo z entitetnimi tipi, medtem ko informacijski inZeniring
uporablja zgolj poimenovano ¢rto. Vsakemu razmerju lahko dolo¢imo Stevnost, ki pove, koliko
entitet drugega entitetnega tipa nastopa v razmerju z izbrano entiteto. Standardne moznosti so 1
proti 1, 1 proti N in M proti N z variantami obvezne ali pogojne prisotnosti. Nekatere notacije
omogocajo tudi natancno specifikacijo Stevila povezav.

Enakovreden koncept razmerju je v razrednem diagramu asociacija. Pod pojmom razmerje namrec
v diagramu razredov razumemo kakrsenkoli odnos med dvema ali ve€ razredi, kar poleg asociacij
vkljuuje Se generalizacijo, odvisnost itd. Binarne asociacije prikazujemo s polno c¢rto, n-terne z
rombom, pri ¢emer jih lahko (ni pa obvezno) zaradi boljSega razumevanja tudi poimenujemo.
Posamezno stran asociacije imenujemo vioga (analogno z modelom ER), vlogi pripiSemo Stevnost in
s tem omejimo Stevilo v asociaciji udelezenih objektov. Podobno kot razmerju modela ER, lahko tudi
asociaciji razrednega diagrama pripiSemo lastnosti in sicer tako, da ji dodamo razred z ustreznim
naborom atributov. Med razmerjem in asociacijo v osnovi torej ni vecjih razlik, ¢e odstejemo
moznost dolocitve smeri branja in vidljivosti oziroma usmerjenosti. Asociaciji namrec¢ lahko
dolo¢imo usmerjenost, ki prikazuje, kako se razredi med seboj vidijo. Tako na primer na sliki (Slika
44) razred Racun dobavitelja ve za obstoj razreda Partner (ga vidi), medtem ko obratno ne velja.

127

Za razliko od modela ER, ki vsebuje zgolj en tip asociacije, lahko pri konceptualnem nacrtovanju
podatkovne baze z diagramom razredov uporabimo Se vec posebnih tipov, s katerimi dodatno
specificiramo odnose med razredi. Primera tovrstnih asociacij sta agregacija (prikazana kot prazni
romb) in kompozicija (prikazana kot polni romb). Asociaciji predstavljata odnos med dvema
razredoma, ko en razred poseduje drugega, pri cemer je razlika med njima v mo¢i lastnistva. V
primeru kompozicije je posedovani razred ekskluzivno del lastnisSkega razreda, medtem ko ima lahko
razred v primeru agregacije tudi vec¢ lastnikov. Koncept agregacije je po svoji funkcionalnosti blizu
konceptu Sibkega entitetnega tipa modela ER.

Tretji bistveni koncept modela ER je generalizacija, ki spada med novosti uvedene leta 1986 v okviru
razSirjenega modela ER. Generalizacija specificira odnos tip — podtip med dvema ali vec entitetnimi
tipi oziroma mnozica — podmnozica, ¢e obravnavamo entitetni tip kot mnozZico entitet. Pri
generalizaciji lahko dolocimo Se pokritje, ki pove, kako mnoZice podtipov pokrivajo mnoZico nadtipa
(kombinacije totalnega ali delnega z ekskluzivnim ali prekrivnim). Tudi diagram razredov vsebuje
koncept generalizacije, definiran kot odnos med splosnim in enim ali vec specificnimi razredi in
prikazan v obliki puscic od specifi¢nih razredov k sploSnejSemu. Koncepta se prakti¢no ne razlikujeta,
seveda pa ne smemo pozabiti, da v primeru diagrama razredov podrazred ne podeduje zgolj
atributov temvec tudi operacije, povezave in semantiko.

Dedovanje operacij je v objektnem svetu tesno povezano s konceptom veclicnosti, ki predstavlja
zmoznost programskega jezika, da uporablja isto ime za vec operacij. Poznamo vec tipov vecli¢nosti:
operacijska (razred vsebuje vec operacij z istim imenom, a razli¢nimi parametri), vkljucitvena (vec
podrazredov vsebujejo operacijo z istim imenom, a drugacnim obnasanjem). MozZnosti, ki nam jih
ponuja veclicnost, lahko s pridom izkoristimo predvsem, Ce za implementacijo uporabimo objektno
ali objektno relacijsko podatkovno bazo, pri ¢emer pa tudi nekateri relacijski sistemi za upravljanje
podatkovnih baz vsebujejo elemente operacijske vecli¢nosti (na primer programski jezik PL/SQL
podatkovnih streznikov podjetja Oracle).

Slika 45: Primer generalizacije

<<persistent>>
Racun
gRaéun
¢leto
£Vrsta
&Datum
LZnesek
*V/nesi()
®Spremeni()
<<persistent>> <<persistent>>
Racun dobavitelja Racun kupca
¢Dobavitelj ¢Kupec
&5t orig. rauna ¢Naroéilnica
&Prevzemnik ¢Pogodba
%Vnesi() %Vnesi()
“Spremeni() *Spremeni()

128

7.2.3 Druge posebnosti objektnega nacrtovanja

Sedaj ko smo primerjali vse koncepte modela ER z ekvivalentnimi koncepti razrednega diagrama, se
lahko posvetimo posebnostim objektnega pristopa.

Prvi tak koncept je vmesnik, ki ga lahko enacimo z abstraktnim razredom brez atributov. UML
definira vmesnik kot deklaracijo nabora navzven vidnih operacij razreda, pri cemer ima lahko
razred vecje Stevilo vmesnikov ali pa en sam vmesnik zdruzuje operacije vecjega Stevila razredov
(Muller, 1999, str. 158-162). Podobno kot abstraktni razredi tudi vmesniki nimajo svojih primerkov,
temvec so realizirani z metodami razredov, ki jih implementirajo. Vmesniki torej ne predstavljajo
neke obstojne strukture zapisane v podatkovni bazi, ampak operacije, ki s podatki upravljajo. Z njimi
lahko na zelo preprost in razumljiv nacin prikazemo, kako in v kaksnih medsebojnih povezavah bodo
podatki uporabljeni v programskih resitvah. Na sliki (Slika 46) sta prikazana razred Racun dobavitelja
in vmesnik Racun, ki implementira operaciji za vnos in spreminjanje podatkov tega razreda.

V razrednem diagramu lahko za modeliranje podatkovnih baz s pridom uporabimo tudi koncept
paketa, definiranega kot skupina gradnikov modela (predvsem razredov), zdruzenih z nekim
namenom in po nekem kriteriju. Pravimo, da med dvema paketoma obstaja odvisnost, ce
sprememba definicije enega paketa lahko zahteva spremembo drugega. Odvisnosti podrobneje
specificiramo z dolocitvijo stereotipov (<<access>>,<<import>> itd). Pakete prikazujemo kot mape,
odvisnosti pa kot crtkane puscice. Tudi nad ime paketa lahko dodamo stereotip, ki dodatno
pojasnjujejo vrsto paketa npr. <<subsystem>>. Uporaba tovrstnih paketov je primerna predvsem v
zaCetni fazi izgradnje podatkovne baze, ko na podlagi diagrama primerov uporabe dolo¢imo
osnovne podsisteme in podrocja uporabe], ki jih potem lahko razvijamo dokaj neodvisno (Muller,
1999, str. 130-136).

Razredni diagrami prinasajo Se eno pomembno novost v primerjavi z modelom ER, moznost prikaza
komentarjev (Slika 46). V ta namen uporabimo element imenovan opomba, ki ga lahko poveZzemo
s katerimkoli gradnikom diagrama. Opombe se nadvse uporabne pri predstavljanju kompleksnejsih
poslovnih pravil, ki presegajo doloditev objektnih identifikatorjev in domen. Opombe lahko

Ragun lzberi zgolj podpisnike kjerje
atribut podpisnik=TRUE
“Vnesi() /
%S premeni() <<persistent>> /

Podpis /
b ¢Datum in ura podpisa |

; | ,

<<persistent>> | Ff
Ragun dobavitelja | -
= <<persistent>>

oTatcun } Delavec
¢leto =
&Vrsta \ oﬁrllf;a
¢Datum | ﬁorg nota
Znesek 0.1 1 - eno
iooba\“eu " Podpise n ¢Podpisnik
%Vnesi() “Preberi()
“Spremeni()

129

vsebujejo preprosto besedilo v naravnem jeziku, kot tudi psevdo kodo, strukturirano besedilo,
elemente programskih jezikov ali UML-ov jezik za opis omejitev OCL (Object Constraint Language).

Slika 46: Primer uporabe vmesnika, asociacijskega razreda in opombe

7.3 RazSirjeni podatkovni tipi

SQL 2003 omogoca opredelitev uporabnisko definiranih tipov (ang. user-defined types - UDT),
imenovanih tudi abstraktni podatkovni tipi (ang. abstract data types ADTs). Uporabljajo se lahko na
enak nacin kot vnaprej doloceni standardni podatkovni tipi (na primer CHAR, INT, FLOAT).
Uporabnisko definirane tipe (UDT) delimo v dve kategoriji: razlo¢evalni tipi (ang. distinct types) in
strukturirani tipi (ang. structured types) (Connolly in Begg, 2005, str. 929-942).

Prva skupna tipov je enostavnejsa. Razlocevalni tip je uporabnisko definiran tip, ki svojo notranjo
predstavitev deli z notranjo predstavitvijo vgrajenega tipa, na katerem temelji, vendar se pri uporabi
Steje, da gre za dve locena, ve¢inoma med seboj nezdruZljiva tipa. Primer kreiranja uporabnisko
definiranega razlocevalnega tipa:

CREATE TYPE StevilkalLastnikaTip AS VARCHAR(5) FINAL;

CREATE TYPE StevilkaZaposlenegaTip AS VARCHAR(5) FINAL;
Ceprav oba tipa temeljita na vgrajenem tipu VARCHAR in sta dolZine 5, njuni instanci nista zdruzljivi.
Ceprav zadeva nekoliko spominja na definiranje domen v osnovnem SQL-u, pa je potrebno
poudariti, da imajo domene izkljuéno funkcijo omejevanja veljavnih vrednosti, ki jih je dovoljeno
shraniti v nek stolpec.

V splosnem definicija UDT-ja vsebuje enega ali vec atributov, nic ali ve¢ deklaracij operacij (metod)
in tudi deklaracij operatorjev. Poleg tega lahko definiramo tudi enakost in urejenost UDT-ja z
uporabo ukaza stavka CREATE ORDERING FOR. V tem primeru gre za strukturirane tipe.

Podajmo primer: denimo, da je p instanca strukturiranega tipa OsebaTip, ki ima atribut Ime tipa
VARCHAR. Do tega atributa lahko dostopamo na objekten nacin (z uporabo .), kot smo tega navajeni
iz objektnega programiranja in sicer:

p.Ime

p.Ime='A. Novak'

Razsirjeni podatkovni tipi se uporabljajo v objektno-relacijskih podatkovnih bazah.

7.4 Standard ODMG

Standard na podrocju objektnih podatkovnih modelov in objektnih SUPB-jev (OSUPB) je bil
postavljen leta 1999 s strani organizacije Object Data Management Group (ODMG), ki zdruZuje
Stevilna znana podjetja, predvsem ponudnike objektnih SUPB-jev: Sun Microsystems, eXcelon
Corporation, Objectivity Inc., POET Software, Computer Associates, and Versant Corporation.
Namen standarda ODMG 3.0 je bil dolociti semantiko, ki jo bodo razumeli vsi objektni SUPB-ji, kar

130

bo omogocalo prenosljivost knjiznic in aplikacij med razlicnimi objektnimi SUPB-ji. Glavne

komponente ODMG arhitekture so (Connolly in Begg, 2010, str. 885):

e Objektni model (OM),

e Objektni jezik za kreiranje objektov: Object Definition Language (ODL); ekvivalenten jeziku
SQL DDL v relacijskih SUPB-jih,

e Objektni poizvedovalni jezik - Object Query Language (0OQL); ekvivalenten SQL DML v
relacijskih SUPB-jih,

e Povezave na objektne programske jezike: C++, Java, Smalltalk.

ODMG specifikacije pokrivajo tako SUPB-je, ki objekte shranjujejo direktno v objektni SUPB, kot tudi
v ODM (Object-to-Database Mappings), ki objekte pretvorijo in shranijo v relacijski ali kateri drug
SUPB. ODM-ji omogocajo, da so objekti podatkovne baze dostopni razlicnim objektno usmerjenim
programskim jezikom ter tako razSirjajo osnovne funkcije programskega jezika s trajnostjo
podatkov, nadzorom dostopa, moznostjo poizvedovanja in drugimi funkcijami podatkovnih baz.

7.4.1 Objektni model

Podajmo nekaj osnovnih objektnih definicij:

e Objekti (ang. objects) in konstante (literale) se razvrscajo v tipe (ang. type). Samo objekti imajo
enoli¢ni identifikator.

e Vsi objekti in konstante istega tipa imajo skupno obnasanje in stanje. Tip je tudi sam objekt.
Objekt je vCasih naveden kot instanca svojega tipa.

e Obnasanje je opredeljeno z nizom operacij, ki jih lahko izvedemo nad objektom ali jih objekt
izvaja. Operacije imajo lahko seznam vhodnih/izhodnih parametrov in lahko vracajo rezultat
doloéenega tipa.

e Stanje je opredeljeno z vrednostmi objekta za dolo¢eno mnozZico lastnosti (ang. property).
Lastnost je lahko atribut ali razmerje enega do drugega objekta. Vrednosti lastnosti objekta, se
s ¢asom navadno spreminjajo.

e Objektni SUPB shranjuje objekte in jim omogoca, da so v skupni rabi ve¢ uporabnikov in aplikacij.
OSUPB temelji na shemi, ki je opredeljena z jezikom za definiranje objektov (Object Definition
Language) in vsebuje instance tipov, opredeljenih v njegovi shemi.

Objekt je opisan s Stirimi znacilnostmi:

e Strukturo: tipe delimo v dve skupini. V prvi skupini imamo: osnovne tipe (npr. long, short, float,
double, string), zbirke (npr. mnozZica, seznam, polje, seznam) in strukturirane tipe (npr. datum,
ura). V drugi skupini pa imamo sestavljene objektne tipe.

¢ Identifikatorjem: vsakemu objektu je s strani OSUPB dodeljen enoli¢ni identifikator objekta, ki
se ne spreminja in se ponovno ne uporabi po brisanju objekta.

e Imenom: objektu lahko dodelimo ime, kar nam omogoca razred Database in

e Zivljenjsko dobo: se dolo¢i pri kreiranju objekta in je lahko zacasna ali trajna. Za shranjevanje
trajnih objektov skrbi OSUPB.

V objektnem modelu so definirane vgrajene zbirke, ki omogocajo hranjenje poljubnega Stevila
neimenovanih homogenih elementov. To so:

e Mnoiica (ang. Set): neurejena zbirka, ki ne dovoljuje shranjevanja duplikatov,

e Vreca: (ang. Bag) — neurejena zbirka, ki dovoljuje shranjevanje duplikatov,

e Seznam (ang. List): urejena zbirka, ki dovoljuje shranjevanje duplikatov,

131

e Polje (ang. Array): enodimenzionalno polje prilagodljive dolzine,
e Slovar (ang. Dictionary): neurejena zbirka parov klju¢-vrednost, brez duplikatov v kljucih.

Vsak od navedenih tipov zbirk ima definirani vsaj operaciji za kreiranje objekta ter njegovo
vstavljanje v zbirko. MnoZica in vreca pa imata na primer dodatno definirane Se tipi¢ne operacije
kot so: presek, unija in razlika.

ODMG objektni model podpira koncept podatkovne baze kot podrocja za hrambo trajnih objektov
dane mnotzice tipov. Baza ima shemo, ki vsebuje mnozico definicij tipov. Vsaka podatkovna baza je
instanca tipa Database z vgrajenimi operacijami za njeno odpiranje (open), vpogled (lookup) in
zapiranje (close).

Slika 47: ODL vmesnik za delo z objektno podatkovno bazo
interface DatabaseFactory {
Database newl();

1.
I

interface Database]
exception DatabaseOpen{};
exception DatabaseNotFound{};
exception ObjectNameNotUnique{};

exception ObjectNameNotFound|};

void open(in string odms_name) raises(DatabaseNotFound, DatabaseOpen);
void close() raises(DatabaseClosed, TransactionlnProgress);
void bind(in Object an_object, in string name) raises(DatabaseClosed,

ObjectNameNotUnique, TransactionNotInProgress);
void unbind(in string name) raises(DatabaseClosed,

ObjectNameNotFound, TransactionNotInProgress);
void lookup(in string object_name) raises(DatabaseClosed,

ObjectNameNotFound, TransactionNotInProgress};

ODLMetaObjects:Module schema() raises(DatabaseClosed, TransactionNotInProgress);

1.
i

Vir: Connolly in Begg, 2010, str. 894.

7.4.2 ODL (Object Definition Language)

ODL je objektni jezik, ki omogoca specifikacijo objektnih tipov v objektno usmerjenih sistemih,
skladnih s standardom ODMG. Je ekvivalenten jeziku SQL DDL, ki se uporablja v relacijskih SUPB-jih.
ODL omogoca interoperabilnost med razlicnimi objektnimi SUPB-ji. Sintaksa jezika ODL razSirja
Interface Definition Language (IDL) standarda CORBA (Common Object Request Broker
Architecture). Podrobne specifikacije jezika ODL presegajo obseg tega ucbenika. Bralci si lahko
podrobnosti preberejo v Cattell (2000). V nadaljevanju podajamo primer stavkov jezika ODL za
kreiranje dela objektne podatkovne baze, ki temelji na podatkovnem modelu, podanem s sliko (Slika
48).Podatkovni model prikazuje nacrt podatkovne baze nepremicninske agencije. V njej Zzelimo
hraniti podatke o osebah, katerih pa je vec vrst (gre za specializacijo razreda Oseba). Razred Oseba
specializiramo na razrede Lastnik, Najemnik in Zaposleni. Razred Lastnik je namenjen hranjenju
podatkov o lastnikih nepremicnin, ki jih agencija oddaja. Razred Najemnik hrani podatke o

132

najemnikih nepremicnin. Tretja specializacija Osebe je razred Zaposleni, ki je nadalje specializiran
na Vodje, ki vodijo posamezne poslovalnice agencije (razred Vodja) in agente, ki delajo v posamezni
poslovalnici (razred Agent). Razred Nepremicnina je namenjen hranjenju podatkov o nepremicninah
(kje se ta nahaja, vrsta nepremicnine (npr. hisa, garsonjera, stanovanje), kakSna je cena najema,
Stevilo sob). Razred Nepremicnina je z asociacijo povezana z razredom Lastnik, ki pove, kdo je lastnik
posamezne nepremicnine (ta je lahko le eden). Nepremicnina je z asociacijo povezana tudi z
razredom Najemnik (Stevnost vec). Tako se hrani celotna mnozica najemnikov. Razred Poslovalnica
hrani podatke o posamezni poslovalnici nepremicninske agencije (Sifro, lokacijo) ter asociacije do
razredov Vodja (poslovalnico vodi natanko en vodja), Agent (poslovalnica ima ve¢ agentov) in
Nepremicnina (psolovalnica ponuja ve¢ nepremicnin).

Atributi posameznih razredov so na sliki (Slika 48) prikazani v razredih, pri cemer ne smemo pozabiti
na dedovanje vseh atributov podrazreda od nadrazreda. Tako na primer za vse lastnike nepremicnin
hranimo podatke o Sifri in naslovu (atributa IDLastnik in Naslov, ki sta navedena v tem razredu) ter
ime in priimek (atributa Ime in Priimek, ki se dedujeta od nadrazreda Oseba in v razredu Lastnik zato
nista posebej prikazana).

Slika 48: Podatkovni model nepremicninske agencije

Oseba
- Ime
- Priimek
Zaposleni Lastnik Najemnik
- IDZap - IDlastnik - IDnajemnik
- Spol - Naslov - Telefon
- Ti
- Datum_rojstva Ip _ .
- Maxnajemnina
- Del_mesto 1.1
- Placa ‘
0.*
Nepremicnina
Vodja Agent - IDnep .
- Mesto
. |- Ulica B
0. - Stevilka
- Vrsta
1.1 1+ - Stsob
Pos Ini - visina_najemnine
oslovalnica
1.1 - IDposlovalnica | 141 .
- Mesto 0..
- Ulica
- Stevilka 11

133

Primer 7.4.2.1: Kreiranje dela objektne podatkovne baze nepremicninske agencije

module NeprAgencija {
class Poslovalnica //definiramo razred Poslovalnica
(extent Poslovalnice key IDPoslovalnica)
{
//definiramo atribute
attribute string IDPoslovalnica;
attribute struct NaslovPosl { string Mesto, string Ulica, string Stevilka} naslov;
//definiramo povezave
relationship Vodja je_vodena inverse Vodja:: vodi;
relationship set<Agent>ima inverse Agent:: dela_v;
relationship set<Nepremicnina> ponuja inverse Nepremicnina:: je_na voljo_v;
//definiramo operacije
void Vzeti_v_najem (in string IDNep) raises (NepremicninaZeNajeta);
|3
class Oseba { //definiramo razred Oseba
//definiramo atribute
attribute struct ImePriimek {string Ime, string Priimek} imepriimek;

|3
class Zaposleni extends Oseba //dedovanje iz razreda Oseba
(extent zaposleni key IDZap)
{
attribute string IDZap;
attribute enum tipspol{M,Z} spol;
attribute date datum_rojstva
attribute enum vrste_DM {vodja, nadzornik,agent} Del_mesto;
attribute float Placa;
//definiramo operacije
short PridobiStarost();
void PovecajPlaco(in float znesek_povisanja);
L
class Vodja extends Zaposleni //dedovanje iz razreda Zaposleni
(extent vodje)
{
// definiramo povezave
relationship Poslovalnica vodi inverse Poslovalnica:: je_vodena;
|3
class Agent extends Zaposleni //dedovanije iz razreda Zaposleni
(extent agenti)
{
// definiramo povezave
relationship Poslovalnica dela_v inverse Poslovalnica:: ima;
// definiramo operacije
void PremakniZap(in string izIDPoslovalnica, in string vIDPoslovalnica) raises
(se_ne_dela_v_poslovalnici);
b

7.4.3 OQL (Object Query Language)

OQL je objektni poizvedovalni jezik, ki omogoca odstop do objektne podatkovne baze. Je
ekvivalenten jeziku SQL DML v relacijskih SUPB-jih. Sintaksa je podobna sintaksi SQL-la, vendar ne

134

vsebuje ukazov za azuriranje pac pa to prepusca operacijam, definiranimi nad objektnimi tipi. OQL
lahko uporabljamo kot samostojen jezik ali pa kot jezik, vklju¢en v drug objektni programski jezik.
ODMG definira povezave za vkljucitev v jezike Smalltalk, C++ in Java. OQL lahko kli¢e tudi operacije,
napisane v teh programskih jezikih.

Sintaksa SELECT stavka je podobna sintaksi v SQL-u in je naslednja:

SELECT [DISTINCT] <expression>

FROM <fromlList>

[WHERE <expression>]

[GROUP BY <attributel:expressionl, attribute2:expression2,...>]
[HAVING <predicate>]

[ORDER BY <expression>]

Rezultat poizvedbe je mnoZica v primeru SELECT DISTICT, seznam kadar uporabimo ORDER BY,
drugace pa vreca. V splosSnem potrebujemo vstopno tocko do podatkovne baze v primeru vsake
poizvedbe. Lahko uporabimo katerikoli poimenovani trajni objekt (extent ali poimenovani objekt)
(glej primer 7.4.2.1).

Primer 7.4.3.1: Pridobi mnozico vseh zaposlenih.
V tem primeru lahko uporabimo »extent« razreda Zaposleni.
zaposleni

Primer 7.4.3.2: Pridobi mnozico vseh vodij poslovalnic.
V tem primeru lahko uporabimo »extent« razreda Poslovalnice(poslovalnice) kot vstopno tocko
do podatkovne baze, nato pa uporabimo povezavo (relationship) je_vodena, da najdemo mnozZico
vodij poslovalnic.

poslovalnice.je_vodena

Primer 7.4.3.3: Pridobi vse poslovalnice iz Ljubljane.
SELECT b.IDPoslovalnica
FROM b IN poslovalnice
WHERE b.naslov.Mesto = “Ljubljana”;

Primer 7.4.3.4: Kreiraj pogled vseh agentov, ki delajo v Ljubljani.
Za kreiranje pogleda v jeziku OQL uporabimo stavek DEFINE in pogled poimenujemo, v nasem
primeru LjubljanskiAgenti. Imena pogledov znotraj podatkovne baze morajo biti enoli¢na.

DEFINE LjubljanskiAgenti AS

SELECT s

FROM s IN agenti

WHERE s.dela_v.naslov.Mesto = “Ljubljana”;
SELECT s.imepriimek.Priimek FROM s IN LjubljanskiAgenti;

135

Primer 7.4.3.5: Kreiraj pogled vseh agentov, ki delajo v Ljubljani.
Pri kreiranju poizvedb in pogledov lahko uporabljamo tudi parametre, ki naredijo nase poizvedbe
dinamicne, v naSem primeru je parameter imemesta.

DEFINE mestniagenti(imemesta) AS
SELECT s
FROM s IN agenti
WHERE s.dela_v.naslov.Mesto = imemesta;

Navedeno poizvedbo lahko uporabimo, da pridobimo agente, ki delajo v dolo¢enem mestu, npr:

mestniagenti(“Ljubljana”);
mestniagenti(“Crnomelj”);

Primer 7.4.3.5: Uporaba agregatnih funkcij
Tudi OQL ima na voljo agregatne funkcije COUNT, AVG, MIN, MAX kot jih poznamo Ze iz SQL-a.
Zelimo presteti koliko agentov dela v Ljubljani.

COUNT(s IN mestniagenti(“Ljubljana”));

Agregatne funkcije lahko uporabimo znotraj ali zunaj SELECT stavka. Naslednja dva stavka sta
ekvivalentna:

©® N U kAW

SELECT COUNT(s) FROM s IN agenti WHERE s.dela_v.IDPoslovalnice = “B003”;
COUNT(SELECT s FROM s IN agenti WHERE s.dela_v.IDPoslovalnice = “B003”);

Katero diagramsko tehniko za nacrtovanje objektne podatkovne baze poznate?

Zakaj modela ER ne moremo uporabiti za nacrtovanje objektne ali objektno-relacijske
podatkovne baze?

Kateri so klju¢ni koncepti, ki nastopajo v razrednem diagramu?

Primerjajte koncepte razrednega diagrama s koncepti ER diagrama.

Kaj je namen standarda ODMG 3.0?

Katere so glavne komponente ODMG arhitekture?

Kaj je ODL in éemu je namenjen? Kateremu jeziku relacijskih PB je ekvivalenten?

Kaj je OQL in éemu je namenjen? Kateremu jeziku relacijskih PB je ekvivalenten?

136

8 Orodja za delo s podatkovnimi bazami

V poglavju so opisana tri orodja za delo s podatkovnimi bazami. Poglavje za¢enjamo z opisom CASE
orodja SAP Sybase PowerDesigner (http://sybase-powerdesigner.software.informer.com/16.5/), ki
najbolje sledi opisani metodologiji na¢rtovanja preko treh ravni. Nato bo opisano Se CASE orodje
Oracle SQL Developer Data Modeler, ki je za Studijske namene na voljo brezpla¢no na spletni strani
podjetja Oracle (http://www.oracle.com/technetwork/developer-tools/datamodeler/downloads/
datamodeler-087275.html). Orodje omogoca vizualno nadértovanje podatkovne baze skozi faze, ki
so bile predstavljene v poglavjih 4 in 5. V nadaljevanju predstavljamo drugo Oraclovo orodje in sicer
APEX (Oracle Application Express). Gre za spletno orodje, katerega namestitev ni potrebna. Orodje
omogoca kreiranje podatkovne baze, vnos podatkov, kreiranje poizvedb z uporabo jezika SQL pa
tudi razvoj aplikacij (https://apex.oracle.com/i/index.html), kar pa ni ve¢ predmet obravnave v tem
prirocniku. Obe orodji tako skupaj celovito pokrijeta opravila, povezana s podatkovno bazo, od
njenega nacrtovanja, kreiranja, vnosa podatkov in u¢enja jezika SQL. V zadnjem poglavju na kratko
predstavimo Se MS Access, ki je del zbirke Office in zato vecinoma Ze prisoten v vsakem racunalniku.
V tem zadnjem podpoglavju se poleg prikaza kreiranja podatkovne baze za MS Access posvetimo
predvsem izdelavi poizvedb z uporabo jezika QBE.

8.1 SAP Sybase PowerDesigner

SAP Sybase PowerDesigner je orodje, ki omogoca modeliranje najrazli¢nejsi vidikov, potrebnih pri
razvoju informacijskega sistema: procesnih modelov, UML diagramov, podatkovnih modelov
relacijskih baz, modelov podatkovnega skladis¢a itd. V letu 2002 je orodje PowerDesigner dosegalo
39 % trini delez na podroc¢ju modelirnih orodij (http://en.wikipedia.org/wiki/PowerDesigner), saj
gre za zelo enostavno, a hkrati zelo zmogljivo orodje. V letu 2012 je bilo podjetje Sybase in samo
orodje prevzeto s strani podjetja SAP in se sedaj trzi pod imenom SAP Sybase PowerDesigner. V
nadaljevanju se bomo osredotocili le na nacrtovanje relacijske podatkovne baze s tem orodjem.

V nadaljevanju bo prikazan primer nacrtovanja preprostega podatkovnega modela trgovine skozi
faze konceptualnega, logi¢nega in fizicnega nacrta.

8.1.1 Izdelava konceptualnega modela trgovine

Podjetje Spletko d.o.o. potrebuje spletno trgovino, ki bo omogocala prodajo izdelkov. V podatkovni
bazi, ki bo temelj tega IS, bo potrebno shranjevati podatke o strankah, izdelkih, ki jih trgovina ponuja
ter narodilih strank.

Za vsako stranko Zelijo hraniti podatke o davcni Stevilki, naslovu, imenu in priimku, kraju in postni
Stevilki. O posameznem izdelku Zelijo hraniti naziv, opis in ceno. Z vsako narocilo je potrebno
zabeleziti datum in ¢as oddaje narocila, stranko, ki je narocilo oddala, ter seznam izdelkov s
koli¢inami, kar bo omogocilo kreiranje racuna in odpremo narocenih izdelkov.

137

Slika 49: Kreiranje konceptualnega modela v orodju SAP Sybase PowerDesigner
i’“? PowerDesigner -

File Edit View Repository Tools Window Help

'SI Workspace g

Co al
neeptu Model type: - * New model " Mew model from template

Conceptual
&8, Narocila F Business Process Model General | Extended Model Definitions I
-2 Conceptual ECanc:eptual Data Model
Conceptual & Free Model todel name: ISpIe‘tna prodajalna

=P Information Liquidity Model
(3 Muti-Mods! Report

Bt Object-Oriented Model
Physical Data Model

@ Requirements Model

5 XML Model

Slika 49 prikazuje orodje PowerDesigner in kreiranje konceptualnega modela v njem. Model
poimenujemo Spletna prodajalna. Na delovno povr$ino nato nariSemo entitetne tipe, kreiramo
atribute in dolo¢imo primarne identifikatorje. Nato entitetne tipe poveZzemo med seboj. Uporabimo
grafi¢ne gradnike iz palete (Slika 50).

Slika 50: Paleta gradnikov za izdelavo konceptualnega modela v orodju PowerDesigner

138

Slika 51: Primer konceptualnega modela trgovine

Narocilo
id narocilo <pi> Variable characters (10) <M> je_del_narocila. Postavka_narocila
datum_in_cas Date & Time <M>) kolicina Integer <M>
Identifier_1 <pi>
& il
je_narocila se_nanasa_na_izdelek
il i
Stranka Izdelek
id stranka <pi> Variable characters (10) <M> id izdelek <pi> Variable characters (10) <M>
davcna_stevilka Variable characters (8) naziv_izdelek Variable characters (50) <M>
ime Variable characters (30) <M> opis_izdelek Variable characters (1024) <M>
priimek Variable characters (30) <M> cena_na_kos Decimal <M>
naslov Variable characters (40) <M> Identifier 1 <pi>
Identifier_1 <pi>
je_iz]poste
uN
Posta
postna stevilka <pi> Number (4,0) <M>
naziv_kraja Variable characters (50) <M>
Identifier_1 <pi>

Slika 51 prikazuje konceptualni model PB spletne trgovine, ki ustreza zapisanim poslovnim
zahtevam. Model obsega 5 entitetnih tipov s pripadajocimi atributi. Da bi model ustrezal 3. normalni
obliki, smo atributa »postna_stevilka in »naziv_kraja« umestili v lo¢en entitetni tip z nazivom POSTA.
Razmerje med entitetnim tipom STRANKA in POSTA pove, da stranka prebiva v natanko enem kraju
(z enoli¢no postno Stevilko). V drugo smer pa, da iz doloCenega kraja (z dolo¢eno postno Stevilko)
lahko prihaja ni¢, ena ali vec¢ strank. Razmerje obstaja tudi med entitetnima tipoma STRANKA in
NAROCILO. Doloc¢ena stranka lahko odda nic, eno ali ve¢ narocil, medtem ko se dolo¢eno narocilo
nanas$a na natanko eno stranko.

Ker na vsakem narocilu lahko prodamo vec izdelkov, za vsakega pa si moramo zabeleZiti tudi
prodano koli¢ino, potrebujemo entitetni tip POSTAVKA_NAROCILA, ki povezuje NAROCILO in
IZDELEK. POSTAVKA_NAROCILA nima enoli¢nega identifikatorja iz vrst lastnih atributov, zato gre za
Sibki entitetni tip. Njen enoli¢ni identifikator sestavljata identifikatorja id_narocilo in id_izdelek. To
prikaZemo na diagramu s pus&icami, ki prikazujejo odvisnost tipa POSTAVKA od tipov NAROCILO in
IZDELEK. Ostali entitetni tipi so mocni, saj imajo enoli¢ni identifikator iz vrst lastnih atributov
(postna_stevilka v tipu POSTA, id_stranka v tipu STRANKA, id_izdelek v tipu IZDELEK in id_narocilo v
tipu NAROCILO).

Oznaka <pi> oznacuje enoli¢ni identifikator entitetnega tipa. Oznaka <M> oznacuje obveznost
atributa. Vsi atributi, ki predstavljajo enoli¢ni identifikator so vedno obvezni. Poleg teh lahko
dolo¢imo Se druge obvezne atribute. V primeru tipa STRANKA smo dolocili, da so atributi ime,
priimek in naslov obvezni, medtem ko davcna_stevilka ni obvezna (je brez oznake <M>). Na
diagramu vidimo tudi podatkovne tipe, ki povedo, kaksne vrste podatkov bo mozno vnesti. Tako je

139

npr. davca_stevila omejena na 8 znakov, medtem ko jih je za vpis imena na voljo 30, za priimek pa
40.

8.1.2 Izdelava logicnega modela trgovine

Naslednji korak je generiranje logicnega modela, ki je v primeru orodja PowerDesigner
avtomatizirano. Po izbiri ukaza za generiranje (Tools->Generate Physical Data Model) je potrebno
izbrati SUPB, za katerega bomo generirali logi¢ni model. Slika 52 prikazuje generiranje logi¢nega
modela za Oracle 10g SUPB. Pri tem je potrebno opozoriti, da terminologija v orodju ni skladna z
opisano terminologijo v poglavju 9 in se zato tukaj izbere ukaz za generiranje »fizicnega«
podatkovnega modela.

Slika 52: Generiranje logicnega modela trgovine

i N
PDM Generation Options it uﬂléj

General l Detail I Target Models] Selection I

% Generate new Physical Data Model

DBMS: M |[=
{* Share the DBMS definition
" Copy the DEMS definition in madel
I arne: |Nar0c:i|a ﬂ
Code: |Narocila F

Canfigure Maodel Options.

" Update existing Physical D ata Model
Select model: |E§, Narocila FM J J

DEMS: |
-

QK | Cancel Apphy Help

140

Slika 53: Primer logi¢nega modela trgovine
Narocilo

id_narocilo VARCHAR2(10) <pk> -

id_stranka VARCHAR2(10) <fi STAVKA_JE_DEL_NA_m id narocilo VARCHAR2(10) <pkfki>
datum_in_cas DATE id izdelek VARCHAR2(10) <pkfk2>

kolicina INTEGER
| |

FK_NAROCILO_JE_ NAROCI_STRANKA

Postavka_narocila

FK_POSTAVKA_SE_NANASA_IZDELEK

| |
Stranka v

id_stranka VARCHAR2(10) <pk>
postna_stevilka NUMBER(4,0) <fk>
davcna_stevilka VARCHAR2(8)

lzdelek

id_izdelek VARCHAR2(10) <pk>
naziv_izdelek VARCHAR2(50)
opis_izdelek VARCHAR2(1024)

ime VARCHAR2(30)
priimek VARCHAR2(30) cena_na_los NUMBER

naslov VARCHAR2(40)

|
FK_STRANKA_JE_IZ POS_POSTA

Y

Posta

postna_stevilka NUMBER(4,0) <pk>
naziv_kraja VARCHAR2(50)

Tabela 53 prikazuje logi¢ni podatkovni model spletne trgovine po izvedeni preslikavi. 1z diagrama so
razvidne spremembe glede na konceptualni model. Najprej opazimo spremembo pri navedbi
podatkovnih tipov atributov, ki sedaj ustrezajo izbranemu SUPB (Oracle 10g). Splosni tip »variable
characters« se je tako npr. preslikal v tip »varchar2«, tip »decimal« pa v »number«. Druga
sprememba so tuji kljuci, ki so oznaceni z oznako <fk> (ang. foreign key). Tuji klju¢i nastanejo povsod,
ker sta entitetna tipa povezana z razmerjem Stevnosti ena proti mnogo. Tako je npr. nastal tuji kljuc
postna_stevilka v tabeli STRANKA. Ta atribut namrec predstavlja primarni klju¢ tabele POSTA, s
katero je povezana tabela STRANKA. Tuiji kljuci so se generirali tudi v tabeli POSTAVKA_NAROCILA in
sicer id_narocilo in id_izdelek. Navedena tuja kljuca skupaj tvorita primarni kljuc te tabele, saj je bila
tabela v konceptualnem modelu modelirana kot Sibki tip in ni imela identifikatorja iz vrst lastnih
atributov. Vsi atributi, ki so bili modelirani kot primarni identifikatorji (oznaka <pi>) so se preslikali
v primarne kljuce (oznaka <pk>).

141

Slika 54: Kreiranje dodatnega indeksa

LS VEILIUNY LSl
-

.nTable Pmpeiﬁs-Stranka{Sh’anka) n - . ! . | (=] o 22 |
Physical Options (Common) | Partitions I Join Index I Oracle I Notes I Rules I Freview I
General Columns | Indexes | Keys I Triggers I Procedures
FEO038 7 Y REX T
M e Cade Index Propesties - Po_paeni E NI EE
1 id_stranka id_stranka 3 e i " » -
2 stna_stevilk stna_stewilk)))
3 z:v;?a__ste;'ill?a s:v;:;_;:\rilsa General |Co||.|rnns| Physical Options {Cornmon}l Motes I F‘revlewl
4 ime ime) "
= [primac e Marme: |F‘o _priimic| IEl
B naslov naslov Code: IPOJJI'iiITIkLI F
Comment: -
(4
Stereotype: I LI
Cwarier: Iﬁ <Mone: j |:|
T able: |Stmnka
Lk IEIRAETEIRN Tope: [PNone> B
™ Urique [Cluster
Mare >3 | - 0K .
“ ‘ T - = OK | Canced | Aty | Hep |

Na logicnem modelu lahko nadalje definiramo Se morebitne dodatne indekse na atributih za
katere se nam s stalis¢a ucinkovitosti dela z bazo, to zdi potrebno. Tako lahko na primer dodamo
indeks na stolpec Priimek tabele STRANKA.

Slika 54 prikazuje, kako v orodju dolo¢imo dodatni indeks. Indeksi na primarne in tuje kljuce se
dodajo avtomatsko.

142

Slika 55: Prikaz indeksov tabele STRANKA
'n Table Properties - Stranka (Stranka) & & & & & . [— E‘g

Physical Options {Comman) I Partitions | Join Index I Oracle I MNotes I Rules I Preview I

General I Columns Indexes I Keys I Triggers I Procedures
BO0 4 BB X T

M ame Code ClU|FP| F| A=~
1 = | Stranka_PK pillcd
2 je_iz_poste FK je_iz_poste_FK miniw i
3 Pao_priimku Pao_priimku H e uE BN

8.1.3 Izdelava fizicnega modela trgovine

Fizicni model predstavlja kar SQL skripta, ki jo lahko poZzenemo v izbranem SUPB. Skripto kreiramo
z izbiro ukaza Database->Generate Database. PrikaZe se okno, kjer se lahko odlo¢imo za generiranje
skripte, ali pa se preko ODBC tudi direktno poveZemo z bazo in jo skreiramo. V primeru s slike (Slika
56) smo izbrali generiranje skripte (Script generation), ki se zapiSe v datoteko tipa sql.

Slika 56: Izdelava SQL skripte modela trgovine

— -

r ™y
Database Generation . . E‘m

General |Optior15 I Format I Selection I Summar'_.rl Preview I

DEMS [DRALLE Version 10g

Dirsctory =

File name: Ialenkaiest'l sql LI W Ore file only
Generation type: + Script generation " ODBC generation ¥ Edit generation script

v Check model

[~ Autornatic archive

Quick launch
Selection: I <Default= j
Settings set: <Default> j @

ok | canced | aph | Hep |

Nadaljnje delo s podatkovno bazo nato nadaljujemo v ustreznem SUPB (v naSem primeru Oracle
10g).

143

8.2 Oracle SQL Developer Data Modeler

Oracle SQL Developer Data Modeler je brezplatno modelirno orodje podjetja ORACLE, ki omogoca
izdelavo logicnih, relacijskih, fizi¢nih in ve¢-dimenzionalnih podatkovnih modelov. V tem orodju je
uporabljena terminologija Se nekoliko drugacna kot terminologija, predstavljena v poglavju 9.

8.2.1 Izdelava logicnega modela knjiznice

Knjiznica Na grbi potrebuje informacijski sistem, ki bo omogocal hranjenje podatkov o knjigah, ¢lanih
knjiznice in poravnavi ¢lanarine. Poleg tega mora IS omogocati beleZzenje izposoj in vracil izposojenih
knjig.O posamezni knjigi Zelijo hraniti njeno ISBN Stevilko, naslov, avtorja, zalozbo, leto izida in
dovoljen ¢as izposoje.

Za vsakega ¢lana knjiznice Zelijo hraniti podatke o Stevilki ¢lanske izkaznice, datumu vpisa v knjiznico,
ime, priimek, naslov, elektronski naslov, geslo, vrsto ¢lana (npr. ucenec, dijak, zaposleni,
upokojenec). Od vrste ¢lana je odvisna visina ¢lanarine, ki jo mora ¢lan vsako leto poravnati.

Clan si v knjiznici v okviru ene izposoje lahko izposodi eno ali ve¢ knjig, prav tako lahko vsakokrat
tudi vrne eno ali ve¢ predhodno izposojenih knjig. Za vsako knjigo Zelimo zabeleziti, kdaj je bila
izposojena in kdaj je bila vrnjena.

Slika 57: Orodje Oracle SQL Developer Data Modeler
[Oracle 5QL Developer Data Modeler : Logical (Malagal_knjiznica_Kon)

File Edit View Versioning Tools Help

h @R ww e OXR ®» e B o d
P@Browser * () ERLogical (Naloga1_knjiznica_Kon) * |
(3 Designs [7]

& [Eg Untitled_1
= IE_'"ﬁ Malogal_knijiznica_Kon

=21\ W ogical Model
=4 Entities [4] Knjiga Clan

G- &= Relations [3] P " ISBN NUMERIC P " ST_izkaznica NUMERIC
l?'a:: Inheritances] Autar Ime Ime Ime
-E] Views [] Naslow WARCHAR (30) Priimek Ime
% SubViews [] Zalozba WARCHAR (20) Maslow WARCHAR (40 [
T aa SUDVIEWS Leto izzida NUMERIG E-naslov VARCHAR (40)
Displays [] Dovoljen cas izposoje WARCHAR (10) Datum placila ~ MUMERIC
od 1di i L]
jj Mulh;llmensmnal Models [= Knjiga PK (1SBN) F " “rsta clana VARCHAR
[t 43 Relational Models [1] T = Clan PK (ST_izkaznica)
[#- a9 Domains [6] T T
[#- [{fll Data Types Model | N
[+ ([l Process Model . |
[[{fll Business Information lzposaja I
- [E] Change Requests [] P " Id_izpesoje NUMERIE [PO— — — = — — — — — —
Datumn izposoje Date
Datum vinitve Date
F * ST_izkaznica MUMERIC
F " ISBN HUMERIC
= |zposoja PK (ld_izposoje)

Slika 57 prikazuje delovno povrsino orodja Oracle SQL Developer Data Modeler ter izdelavo
logicnega modela v njem, s katerim zatnemo nacrtovanje v tem orodju. Model je lahko prikazan na
razlicne nacine (mozZna je izbira treh razli¢nih notacij).

144

Slika 58: Primer logi¢nega modela knjiznice (IZPOSOJA kot mocni entitetni tip)

Knjiga A Clan A
F " ISEN NUMERIC {13} P " ST_izkaznica NUMERIC {4
Avtor Ime Ime Ime Clanarina A
Naslow WARCHAR (30} Priimek Ime P " Wista clana VARCHAR
Zalozba WVARCHAR (20) Naslov VARCHAR (40) B — — —|H Znesek HUMERIC
Leto izzida NUMERIC (%) E-naslov WARCHAR (40)
Dovoljen cas izposoje WARCHAR (10) Datum placila Date
F " \rsta clana WARCHAR
T
= T
! 0
? |
- I
lzposaoja A |
P * ld_izposoje NUMERIC B — — — — — — — g
Datum izposoje Date
Datum wrnitve Date
F * ST_izkaznica NUMERIC (4)
F * ISEN MUMERIC (13)

Slika 58 prikazuje logi¢ni model knjiznice v notaciji »information engineering«. Pri tem so enoli¢ni
identifikatorji oznaceni z oznako P na levi strani atributa. Na desni strani so podani podatkovni tipi
ali domene atributov (domene je potrebno predhodno definirati). Na levi strani so z oznako F
(Relation UID) oznaceni atributi preko katerih so entitetni tipi povezani med seboj (ti bodo rezultirali
v tuje kljuce). Obveznost atributov ni prikazana.

Konceptualni model (ki je v tem orodju imenovan logi¢ni model) knjiznice glede na predhodno
podane zahteve obsega 4 entitetne tipe: KNJIGA,CLAN, CLANARINA in IZPOSQOIJA. IZPOSOJA se na eni
strani povezuje s KNJIGO, saj povezava pove, da je knjiga lahko ni¢ ali veckrat izposojena. V drugo
stran pa, da se vsaka izposoja nanasa na natanko doloceno knjigo. Pri vsaki izposoji knjige
zabelezimo datum izposoje in datum vrnitve. IZPOSOJA je po drugi strani povezana s CLANOM, saj
za vsako izposojo zabeleZzimo tudi, komu smo knjigo izposodili. CLAN pa si seveda lahko izposodi ni¢
ali ve€ knjig. Dodatno imamo 3e Sifrant vseh vrst clanov CLANARINA s cenikom zneskov ¢lanarine.
CLAN je povezan s CLANARINO preko atributa vrsta_clana. Vsaj ¢lan namrec spada v natanko eno
od skupin (otrok, Student, zaposleni, upokojenec...). V primeru s slike (Tabela 58) so vsi entitetni tipi
mocni, saj imajo enoliéni identifikator iz vrst svojih atributov. Crtkane érte povezav v tem orodju
povezujejo mocne entitetne tipe.

Entitetni tip IZPOSOJA lahko modeliramo tudi kot Sibki tip (Slika 59). V tem primeru nimamo atributa
id_izposoje, ampak oznacimo, da atributa ST_izkaznice in ISBN skupaj tvorita primarni identifikator
entitetnega tipa IZPOSOJA. Ker gre za atributa entitetnih tipov s katerima je IZPOSOJA povezana, in
ne za tipu lastni atribut, gre za Sibki entitetni tip. Povezave Sibkih entitetnih tipov z moc¢nimi tipi
imajo polne Crte, da se locijo od ¢rt povezav med mocnimi tipi, ki so ¢rtkane.

145

Slika 59: Primer logi¢nega modela knjiznice (IZPOSOIJA kot Sibki entitetni tip)

KEnjiga A Clan A
P * ISEM NUMERIC (13) P * ST_izkaznica NUMERIZ (%)
Autor Ime Ime Ime Clanarina A
Maslow WARCHAR (30) Friimek Ime P " \rsta_clana WARCHAR (15)
Zalozba WARGHAR (20) Naslow WARCHAR (40) [— — —|H Zpesek NUMERIE (8)
Leto_izzida NUMERIC (4) E_naslov WARCHAR (40)
Dovoljen_cas_izp WARCHAR (10} Daturn_placila Date
F " Wrsta_clana WARCHAR (15)
(
Wiy
lzposaja &
Datum_izposoje Date
Datum_wrnitve Date -
FF" ST_izkaznica MUMERIC (4) [=
FF* ISEN MUKMERIC (13)

8.2.2 Izdelava relacijskega modela knjiznice

Nadalje preslikamo logi¢ni model v relacijskega. Najprej je potrebno kreirati nov relacijski model
(postavimo se na Relational models in iz prirocnega menija izberemo ukaz New Relational model).
Nato se postavimo na izdelan logi¢ni model, ki ga Zelimo preslikati in iz prironega menija izberemo
ukaz Engineer to Relational Model (Slika 60).

Slika 60: Preslikava v relacijski model
3 Oracle SQL Developer Data Modeler T T—

File Edit View Versioning Tools Help

TEfRSnme) 00X » I &S &I @
%aﬂmwser x E] ’E_'"ﬁLogical (Nalogal_knjiznica_Kon) *
(53 Designs [7]

[Bg untitled_1
- [Maloga1_knjiznica_Kon

=297 B ogical Mode!
- [Entit Save A

I

& Rela Bic (13) P osT

?'?u Inhe b
Blvew 2R (30) Pt

& Sub e AR (20) Nasl

] i Ic () E-ni

e Displ Create SubView o .

""" 83 Multidime - B

= 33 Relations Create Display

[(il Rela
& ([l Rela
- 579 Domains Apply Maming Standards

i [l Data Ty Create Glossary from Logical model
- [l Process

o [l Business
..... Change

Set Classification Types

Apply Customn Transformation Scripts

Fera O R e B

Find
Update model with previously exported XL5 (XLSX] file

—
<. Engineer to Relational Model >

Properties

146

Slika 61: Primer relacijskega modela knjiznice (IZPOSOJA kot Sibki entitetni tip)

Knjiga
F " ISBN NUMBER {13}
Awtor WARCHARZ (20 CHA
Maslov WARCHARZ (30)
Zalozha WARCHARZ (200
Leto_i==zida NUKMBER (4

Dovoljen_cas_izp

WARCHARZ (10}

Z= Knjiga_PK (ISEN)

Clan

P " ST_izkaznica
Ime WARCHARZ (20 CHAR)
WARCHARZ (20 CHAR)
WARCHARZ (40)
WARCHARZ (40)

F " “ista_clana

Priimek
Naslow
E_naslov

NUMEER (4}

Daturn_placila DATE

WARCHARZ (15)

Clanarina

P " ‘ista_clana

Znesek

VARCHARZ (15
NUMEBER. (€)

4

= Clan_PK (ST_izkaznica)

[Y

&
M
- -
lzposoja =t
Datum_izposoje DATE
Daturm_vinitve DATE

PF* ST_izkaznica
PF" ISEM

NUMEER (4)
NUMEER (13}

= lzposoja_PK (ST_izkaznica, ISBN)

Po preslikavi je ustrezno spremenjena terminologija v oknih za nastavitev lastnosti. Namesto
entitetnih tipov imamo tabele, namesto atributov stolpce, namesto primarnega identifikatorja
primarni klju¢ itd. v skladu s terminologijo relacijskega modela. Relacijski model po preslikavi
prikazuje slika (Slika 61). Nekoliko spremenjen je graficni prikaz povezav, saj so vse polnih Crt,
Stevnost ena pa je prikazana s puscico. Domene so preslikane v konkretne podatkovne tipa. Imeli
smo domeno Ime, ki je bila uporabljena pri atributih Ime, Priimek in Avtor. Ker je bila domena
definirana kot varchar(20) se to pri vseh treh navedenih atributih preslika v varchar2(20). Drugih
bistvenih razlik med modeloma ni, saj smo Ze pri logicnem modelu upostevali doloc¢ene znacilnosti

relacijskega.

8.2.3 Izdelava fizicnega modela knjiznice

= Clanarina_PHK (Vrsta_clana)

Na koncu Se generiramo SQL skripto. Za to opravilo izberemo ukaz Generate DDL.

Slika 62: Kreiranje SQL skripte

13 Oracle SQL Developer Data Modeler : Relational_1 (Naloga1_ knjiznica_Kon) |y

E[ile Edit View Versioning Tools Help

[BB R B0 B -

i r'[:‘gEruwser x

. [53 Designs [2]

(- [Untitied_1

| = 28 Maloga1_kniznica_kon
i

[=8 7§ ogical Model
(- (28 Entities [4]

- B8 Relational Models [1]
- a3 Domains [5]

- [l Process Model
- I} Business Information

O « @0

@iE e

E] E’%Lugica\ (Nalogal_knjiznica_Keon) X ERE\atunal_l{Na\ugal_knj\zni:a_Knn) x

i &g Relations [3]
t % Inheritances []
v - 5] views o

o 2 SubViews []
- Displays []

33 Multidimensional Models []
[{fil Data Types Model

Change Requests []

3 DDL File Editor - Oracle Database 10g

=

‘Orade Database 11g

Orade Database 11g

" ‘Relah’una_l

b ‘

Save

=]

Help

147

V tem orodju Sele v tem koraku izberemo enega od relacijskih SUPB. Kot prikazuje slika (Slika 62)
imamo na voljo vec razlicic SUPB-jev Oracle, SQL Server in DB2. Generirano skripto (Slika 63)
shranimo, da jo bomo kasneje lahko zagnali v izbranem SUPB.

Slika 63: Izsek iz vsebine SQL skripte podatkovne baze knjiznice
B DDL File Editor - Oracle Database 10g | -

|Orade Database 10g '| |Relaﬁonal_1 '| | Generate | | Eind |

CREATE TABLE Clan
!
5T_izkaznica NUMBER (4] NOT WULL ,

g Ime VARCHAR2 (20 CHAR) ,
10 Priimek VARCHAR2 (20 CHAR) ,
11 Naslov VARCHAR?2 (40) ,|
12 E naslov WVARCHAR2 (40) ,

13 Datum placila DATE ,
4 Vrsta_clana WVARCHARZ NOT NULL

15)

& |ALTER TABLE Clan ADD CONSTRAINT Clan PE PRIMARY KEY
171
18 5T_izkaznica

13

2 |CEEATE TABLE Clanarina

(Vrsta_clana VARCHAR2Z NOT NULL , ZInesek NUMBER

)
ALTER TABLE Clanarina ADD CONSTRAINT Clanarina PE PRIMARY KEY
611

Mreta ~lana

Save | | Close | | Help

8.3 Oracle APEX

Oracle APEX je spletno orodje, ki med drugim omogoca delo s podatkovno baze. Pred uporabo si je
potrebno na spletni strani orodja (https://apex.oracle.com/) kreirati svojo delovno povrsino (ang.
workspace). Podati moramo svoj e-naslov ter delovni povrsini izbrati ime in geslo, s katerima
bomo kasneje do nje odstopali. Po zaklju€eni registraciji in uspesni prijavi se nam prikaze zacetno
okno delovne povrsine (Slika 64).

148

https://apex.oracle.com/

Slika 64: Orodje Oracle APEX

Elle Edit View Higtory Bookmarks Tools Help [0 - = [S|
1M Apex- roznecalenkaBg.. % | & Translate % | [Oracle Application Express x| Oracle Application Express x|+
€ | @ htips.//apexoracle.com/pls/apex/fp=4500:1000:11145: NO: c https://wwwiacebook.com/messagesiti > ¥y B ¥ i A B =

|8 Most Visited @ Getting Started

Application Express (Logout

AL Application Builder v SQL Workshop + | Team Development v | Administration + Q

Apout

SQL> :J @ Application Express is a rapid i
Web application development
Q 100l that lets you share data and
; Jx create applications. Using only a

‘Web browser and limited
Application Builder SQL Workshop Team Development Administration programming experience, you
can develop and deploy
applications that are fast and
News | > | |seare

Learn More

Deutsch English Espafiol Frangais ltaliano Porugués (Brasil) gir B4 g (Blis) HoAEE $HE0

Site-Specific Tasks

APEX Meetups

Top Applications Top Users
Download Oracle Application
sebastianlahajnar. 16 Express
Who do | contact for help?
Oracle Application Express
Discussion Forum
I pls/apex/f?p=4 111453180821395:NO:: -

V nadaljevanju bodo opisana tipi¢na opravila nad podatkovno bazo: kreiranje baze iz predhodno
pripravljene SQL skripte, pregled in rocno kreiranje objektov baze (tabel, stolpcev, omejitev...) ter
uporaba jezika SQL.

8.3.1 Kreiranje baze iz predhodno pripravijene SQL skripte

V poglavjih 8.1.3 in 8.2.3 smo pokazali kreiranje SQL skripte. Da bi skripto lahko izvedli, jo moramo
najprej naloziti v orodje APEX. To storimo tako, da iz menija SQL workshop izberemo ukaz SQL
Scripts. Gumb Upload nam omogoca skripto poiskati in jo naloZiti v APEX. Skripta se sedaj nahaja na
vrhu seznama skript. Orodje nam omogoca, da skripto prej Se pogledamo in popravimo.

Slika 65: Delo z SQL skripto

File Edit View History Bookmarks Tools Help WO =
Inbox (1) - rozanec.alenka.. % | £ Translate % | [SQL Scripts % | Oracle Application Express ®x |+
p PPl P |
€ @ hitps://apex.oracle.com/pls/apex/f2p=4500: O::8isuccess_m: pt+uploaded.+ +You+may+ click+on+ the+script+to 7 & https://wwwacebookcom/messages’ti > | Ty B & @ A B =

[8) Most Visited @ Getting Started

Application Express

0 Script uploaded. You may click on the scriptto editor
run it.

Home | Application Builder v

A | SQLWorkshop | SQL Scripts DRSNS A

Tasks
Delete Checked | | Upload | SRS
e —— Manage Results

Show Quotas

Q- Go || ® E Actions v

Export -

- Import

[Edit Owner Name Updated By Updated¥] ~ Bytes Resuls Run
] Z SEBASTIAN.LAHAJNAR@SIOLNET knjiznical SEBASTIAN LAHAINAR@SIOLNET | 1 seconds ago 3,120 0 ﬂ
= Z SEBASTIAN. LAHAJNAR@SIOLNET Knjiznica SEBASTIAN LAHAJNAR@SIOLNET | 26 minutes ago 3,068 2 u
] Z SEBASTIAN LAHAJNAR@SIOLNET ddl sql SEBASTIAN LAHAJNAR@SIOLNET | 1.1 years ago 442 1 u
] M SEBASTIAN LAHAJNAR@SIOLNET = sqldeveloper SEBASTIAN LAHAINAR@SIOLNET = 1.2 years ago 1577 5 u
=\ [SEBASTIANLAHAINAR@SIOLMET ckripta 3 1 = SEBASTIAN LAHAINAR@SIOLNET | 13years ago 109 EREN > |
= Z SEBASTIAN.LAHAJNAR@SIOLNET ekipa_vnos - 1.3years age 64 1 u
(=} Z SEBASTIAN. LAHAJNAR@SIOLNET skripta_3_2 SEBASTIAN LAHAJINAR@SIOLNET | 1.3 years ago 47 3 u
] Z SEBASTIAN.LAHAJNAR@SIOL NET _ test - 1.8years ago 44 2 ﬂ a

149

Slika 65 prikazuje delo z SQL skripto. Po kliku na ukaz Run se skipta pozene. Ce skripta ni vsebovala
napak, dobimo kreirano celotno podatkovno bazo, kot smo jo naértovali. Ce so napake, se deli
skripte z napakami ne izvedejo (npr. lahko se nam dolo¢ena tabela ne kreira) in dobimo samo del
podatkovne baze iz nacrta. Na koncu nam orodje javi rezultat uspesnosti (kateri objekti so bili
kreirani in kateri zaradi morebitnih napak v sintaksi ne). V primeru izvedbe skripte za generiranje
baze knjiZnice so se uspesno izvedli vsi ukazi. Generirane so bile vse stiri tabele in tudi vse omejitve
primarnih in tujih kljucev (Slika 66).

Slika 66: Prikaz rezultatov izvedbe skripte za generiranje PB knjiznice

Application Express

Application Builder v

F) SCOL Workshop SOL Scripts Results

oMU LT Team Development v | Administration v

Script: knjiznical Status: Complete
View: Detail @ Summary Rows 15 - Go
i
1 0.06 CREATE TABLE Clan (ST_izkaznica NUMBER (4) NOT NULL Table created 0
2 0.03 ALTER TABLE Clan ADD COMNSTRAINT Clan_PK PRIMARY KEY (ST_i Table altered. 0
3 0.04 CREATE TABLE Clanarina { Vrsta_clana VARCHARZ (15) NOT Table created 0
4 0.02 ALTER TABLE Clanarina ADD CONSTRAINT Clanarina_PK PRIMARY KE Table altered. 0
5 0.02 CREATE TABLE Izposoja (Datum_izposoje DATE , Datu Table created 0
6 0.02 ALTER TABLE lzposoja ADD CONSTRAINT lzposoja_PK PRIMARY KEY Table altered. 0
T 0.01 CREATE TABLE Knjiga (1SBN NUMBER (13) NOT Table created 0
8 0.01 ALTER TABLE Knjiga ADD COMSTRAINT Knjiga_PK PRIMARY KEY { Table altered 0
9 0.02 ALTER TABLE Clan ADD COMNSTRAINT Clan_Clanarina_FK FOREIGM KE Table altered. 0
10 0.02 ALTER TABLE Izposoja ADD CONSTRAINT Izposoja_Clan_FK FOREIGM Table altered. 0
11 0.02 ALTER TABLE lzposaja ADD CONSTRAINT lzposaja_Knjiga_FK FOREI Table altered. 0

row(s) 1-11of 11

8.3.2 Pregled in rocno kreiranje razlicnih objektov podatkovne baze

Vse objekte podatkovne baze lahko pogledamo v brskalniku objektov (ukaz Object Browser menija
SQL workshop), kjer lahko izbiramo objekte po vrstah (npr. izberemo pogled tabel, pogledov,
indeksov...).

Slika 67 prikazuje brskalnik objektov ter nekatere od tabel (CLAN, CLANARINA ter nekatere DEMO
tabele). Poizbiri dolocenega objekta, ga lahko urejamo. Brskalnik nam omogoca tudi ro¢no kreiranje
novih objektov, npr. dodajanje tabele in njenih elementov, ki jo zaradi novih zahtev uporabnikov pri
nacrtovanju nismo modelirali.

150

Slika 67: Brskalnik objektov baze (Object Browser)

Application Express

Home = Application Builder v ESOIRNGTELIGVESSN Team Development % Administration

ﬁ SCOL Workshop Object Browser

Tables |L|

Views
4 Indexes
4 Sequences
, Types
Packages
* Procedures
4 Functions
4 Triggers
+ Database Links TORY
, Materialized Views
S}Tlonyms

m

CLAN

CLAMARINA
DERMO_CONSTRAINT_LOOKUP
DEMO_CUSTOMERS

nnnnnnnnnnn

V primeru izbire objekta tipa tabela, npr. CLAN se nam prikaze okno kot ga prikazuje slika (Slika 68).
Ko stojimo na zavihku Table lahko pregledujemo in urejamo njeno strukturo: dodajamo stolpce,
spreminjamo lastnosti stolpcev, briSemo stolpce, preimenujemo, kopiramo ali briSemo celotno
tabelo itd.

Slika 68: Urejanje tabele
CLAN

Table Data Indexes Model Constraints Grants Statistics UlDefaults Triggers Dependencies SQL

Add Column || Medify Column | | Rename Column || Drop Column || Rename || Copy || Drop | | Truncate | Create Lookup Table

Column Name Data Type Nullable Default Primary Key
ST_IZKAZNICA NUMBER(4,0) Mo - 1
IME VARCHARZ(20) Yes
PRIMEK VARCHARZ(20) Yes
NASLOV VARCHARZ(40) Yes
E_MASLOV VARCHARZ(40) Yes
DATUM_PLACILA DATE Yes

VRSTA_CLANA VARCHAR2(15) Mo

Zavihek Data nam omogoca vnos podatkov v tabelo. Preko zavihka Indexes pregledujemo indekse,
lahko dodajamo tudi nove. Zavihek Model nam grafi¢no prikaze tisti del podatkovnega modela, ki
se nanasa na izbrano tabelo (prikaZze izbrano tabelo in vse z n njo povezane tabele). Po zavihkom
Constraints so zbrane omejitve tabele (nrp. primarni, tuji kljuci, atributi ki ne smejo biti NULL).
Zavihek Grants omogoca pregled, dodeljevanje in odvzem pravic nad tabelo. Zavihek Triggers pa je
namenjen pisanju baznih prozilcev.

151

Da bi lahko pokazali uporabo poizvedovanja, moramo najprej vnesti v bazo knjiznice nekaj podatkov.
To lahko storimo preko zaviha Data ali pa uporabimo kar sam SQL in njegov stavek INSERT. Vrstni
red vnosa podatkov v razliéne tabele je pomemben, saj omejitve tujega klju¢na zahtevajo vnos ene
od vrednosti iz povezane tabele. Zato bomo najprej napolnili tabelo CLANARINA in nato dodali dva
¢lana v tabelo CLAN. Rezultat po nekaj vnosih prikazujeta tabeli (Tabela 56 in Tabela 57).

Tabela 56: Tabela CLANARINA z vnesenimi podatki
Table Data Indexes Model Constraints
Query || Count Rows | | Insert Row

EDIT VRSTA_CLANA ZNESEK

%4 Student 10
,'v.‘I Zaposleni 30
7 Upokojenec 10
e Ofrok 0

row(s) 1-4of4

Tabela 57: Tabela CLAN z vnesenimi podatki

CLAN

Table Data Indexes Model Constraints Grants Statistics Ul Defaults Triggers Dependencies SQL

Query | Count Rows || Insert Row

EDIT ST _IZKAZNICA IME PRIIMEK NASLOV E_NASLOV DATUM_PLACILA VRSTA_CLANA
,'v.'- 1 Metka Novak Triaskac25 metkanovak@gmail.com = 01/28/2015 Student
74 2 Alenka = RoZanec Vidkac. 45 - 0110312015 Zaposleni
,'v.'- 3 Tim Prisel - tim.prisel@gomail.com 12M2i2014 Zaposleni

row(s)1-3of3

8.3.3 Uporaba jezika SOL v APEX-u

Izvajanje SQL ukazov v orodju APEX najdemo pod ukazom SQL Workshop -> SQL Commands (Slika
69). V primeru, da izvedemo SQL poizvedbo, se rezultat pokaZe v spodnjem delu okna. Ce pa gre za
SQL stavke dodajanja, brisanja itd. se nam izpiSe obvestilo o uspesnosti izvedbe doloéenega stavka
(npr. vrstica je bila dodana - dodali smo novega ¢lana). Ce je sintaksa napaéna se izpie obvestilo o
napaki (

Slika 70).

152

Slika 69: Okno za delo z SQL ukazi — primer poizvedbe in vstavljanja novega ¢lana
7 SQL Workshop © SQL Commands ~

SQL Workshop S5QL Commands

v [0 07 | soe [e (0 07 | s [0

SELECT ine, priimek. nasloy INSERT INTO Clan(

rron e ST_izkeznica,Ime, Priimek, Naslov, Vrsta clana)
VALUES
Results Explain Describe Saved SQL History V;

Results Explain Describe Saved SQL History
Peter Potaénik -
Metka MNovak Trza3ka c.25
Alenka RoZanec Vidkac. 45

1 row(s) inserted.

Tim Prisel -
- 0.01 seconds
4 rows returned in 0.01 seconds Download
Primer poizvedbe Primer vstavljanja novega ¢lana

Slika 70: Izpis obvestila o napaki — krsitev referencne integritete

L) SQL Workshop SQL Commands Schema [RPO

Rows “f? ‘ Save m

INSERT INTO Clanf(
ST?izkaznica,;[A@E, Priimek, MNaslov, EL%EE&},&VE)
VALUES (

i

Results Explain Describe Saved SQL History

ORA-02291: integrity constraint (RPOPZ.CLAN CLANARINA FK) viclated - parent
key not found

Vnesimo novo vrsto ¢lana v tabelo CLANARINA. V prazno polje vpiSemo stavek INSERT, ki bo dodal
Se skupino dijakov, z ustrezno sintakso: povemo ime tabele, navedemo imena stolpcev in na koncu
vrednosti, ki jih Zelimo v bazo vpisati. Ce je sintaksa pravila, se vrstica doda (Slika 71).

153

Slika 71: Vnos nove vrste Clana v tabelo CLANARINA z uporabo SQL stavka INSERT

e SQL Workshop SQL Commands

Rows [10 [| Save m

INSERT INTO CLAMARINA (Vrsta clana, Znesek)
VALUES ('Dijak’, 10);

Results Explain Describe Saved $SQL History

1 row(s) inserted.

Sedaj lahko dodamo v tabelo CLAN novega ¢lana, ki je dijak.

Slika 72: Dodajanje dijaka v tabelo CLAN

Rows [0 ¥ | sawe m

INSERT INTO CLAN(ST_IZKAZNICA, IME, PRLIMEK,VRSTA CLANA)
VALUES (4, ‘Peter’,’'PotoZnik’, Dijak');

Results Explain Describe Saved SQL History

1 row(s) inserted.

Pri dodajanju novega zapisa smo dodali dijaka, vendar nismo nastavili vrednosti vseh stolpcev. Ker
naslov, e-naslov in datum_placila nimajo definirane omejitve NOT NULL se zapis lahko doda brez da
vnesemo te vrednosti. Tabela 58 prikazuje podatke v tabeli CLAN po dodajanju zadnjega zapisa.

Tabela 58: Tabela CLAN

Query | Count Rows | Insert Row

EDIT ST_IZKAZNICA IME PRIIMEK NASLOV E_NASLOV DATUM_PLACILA
4 Peter Potocnik
1 Metka Novak Trzaska c25 metka novak@gmail.com 01/28/2015
2 Alenka = RozZanec Viska c. 45 - 01/03/2015

: 1 3 Tim Prisel - tim_prisel@gmail.com 12/12/2014

VRSTA_CLANA

Dijak

Student

Zaposleni

Zaposleni

Sedaj podajmo Se primer izdelave poizvedbe nad tabelo CLAN. Izpisali bomo Stevilke izkaznic, imena
in priimke vseh &lanov, ki so zaposleni. Ce pogledamo predhodno sliko vidimo, da imamo dva tak$na

¢lana. Slika 73 prikazuje poizvedbo (SELECT stavek) in njen rezultat.

154

Slika 73: Poizvedba — zaposleni ¢lani
s SQL Workshop SQL Commands

Rws [0 ¥ | Save m

SELECT st_izkaznica, ime, priimek
FROM CLAN
WHERE (yrsta clana='Zaposleni’)

Results Explain Describe Saved SQL History

2 Alenka RoZanec
3 Tim Prisel
2 rows returned in 0.02 seconds Download

8.4 MS Access

MS Access je danes del zbirke Microsoft Office. Njegov izvor sega v daljno leto 1992. Orodje
omogoca kreiranje podatkovne baze pa tudi razvoj aplikacij z uporabo objektno-orientiranega
programskega jezika Visual Basic for Applications (VBA). V nadaljevanju se bomo osredotodili le na
opravila v povezavi s podatkovno bazo.

8.4.1 Rocno kreiranje podatkovne baze v MS Accesu

Ko zazenemo program MS Access, izberemo novo prazno bazo (ang. blank database), nato se nam
privzeto Ze kreira prva prazna tabela. Za izdelavo podatkovne baze uporabljamo nacrtovalski pogled
(ang. design view), za vnos podatkov pa pogled preglednice (ang. datasheet view). Spodnja slika
(Slika 74) prikazuje okno za izdelavo tabele in sicer zopet kreiramo tabeli CLANARINA in KNJIZNICA
kot v predhodnem poglavju oz. primeru. Dolo¢imo primarni klju¢ in podatkovne tipe polj (atributov).

Slika 74: Kreiranje tabele CLAN

Alld9- |= | Databased : D:
Home Create External Data Database Tools Design
‘]j = Zealnsert Rows __ﬂ Ez z= . ==
ll§ - = Delete Rows = =7 T ="
View Primary - Property Indexes | Create Data Rename/Delete
- Key ‘_'..3 Modify Lookups | sheet Macros * Macro
Views Towols Show,/Hide Field, Record & Table Events
All Access Objects v o« |f| Clan |5 Clanarina
Search. jel Field Name Data Type
Tables = #* st _izkaznica| Number
= clan Ime Text
- Priimek Text
£H Clanarina Naslov Text
E_naslov Text
Datum_placila MNumber
Vrsta_clana Text

Nato tabeli med seboj Se poveZzemo z uporabo pripomocka Relationships. Najprej dodamo obe
tabeli na delovno povrsino (Slika 75a) nato pa ju povezemo (Slika 75b). Polji (atributa) Vrsta_clana
iz obeh tabel povezemo med seboj, pri cemer kot Ze vemo ta atribut predstavlja primarni klju¢ tabele

155

CLANARINA in tuji klju¢ tabele CLAN. Vklju¢éimo Se omejitev referencne integritete, ki bo
preprecevala vnos ¢lanov taksnih vrst, ki jih nimamo v tabeli CLANARINA.

Slika 75: Dodajanje in povezovanje tabel (Relationships)

Clan Clanarina .
e - - Clan Clanarina
¥ st_izkaznica ¥ Vrsta_clana : . 5 =
Ime Znesek ¥ st_izkaznica % Vrsta_clana

»

»

Priimek Ime Inesek
Naslov = Priimek
E_naslov Maslov =
Datum_placila E_naslov
Vrsta dana ¥ Datum_placila
O
. - Vrsta_clana b
Show Table [2 [t
"
[Tebies |guenes o] Edit Relationships ? S
Clan - -
; Table/Query: Related Table/Query:
[Clanarina - [Clan -]
Vrsta_clana E Vrsta_clana o
|—| Join Type..
Create New..
Enforce Referential Integrity
[cascade Update Related Fields
[Cascade Delete Related Records
Relationship Type: COne-To-Many
Close

e —————————————————————————————

Slika 75a: Dodajanje tabel Slika 75b: Povezovanje tabel

Sedaj vnesemo podatke kot v predhodnem primeru, da bomo v nadaljevanju lahko prikazali Se
izdelavo poizvedb. Slika 76 prikazuje tabelo CLAN v pogledu preglednice, ki omogoca vnos podatkov.

Slika 76: Vnos podatkov v tabelo CLAN

All Acce... ¥ « || aan'’ b
Sagreh.. Fe) St iz~ | Ime =~ Priimek -| Maslov - E naslov - |Datum_plac - | Vrsta_clana - |Click to Add ~
b= B 1 Metka Novak Triatkac.25 metka.novak@gmail.com 28.1.2015 Student

B can 2 Alenka RoZanec Viskac.45 3.1.2015 Zaposleni

EY Clanarina 3 Tim Prisel tim.prisel@gmail.com 12.12.2014 Zaposleni

8.4.2 Poizvedovanje z uporabo jezika QBE

MS Access vsebuje orodja za enostavno poizvedovanje s pomocjo jezika QBE (Query by example).
Gre za poizvedovanje z uporabo primerov, kar je zelo priro¢no za tiste uporabnike, ki ne poznajo
jezika SQL. Poizvedbe QBE se v ozadju avtomatsko prevedejo v SQL, ki ga lahko pogledamo in tudi
nadalje urejamo. Tako orodje QBE pomeni tudi dober pripomocek za ucenje jezika SQL.

Poizvedbe v Accessu kreiramo v meniju Create z izbiro ukaza Query Design (Slika 77). Lahko pa
uporabimo tudi ¢arovnika za izdelavo poizvedb (Query Wizard).

156

Slika 77: Kreiranje QBE poizvedbe v orodju MS Access

“ Home Create External Data Database Tools
8§ He [BENE
ED [eee]

=g F Wizard
E 'j =] Form Wizar
[

& Report Wizard 5 - 448 Mod
4

3Navigation' = Labels —= &Clas:
Application Table Table SharePaoint orm Form EBlank Report Report Elank Macro e
Parts = Design Lists = WizarANDesign Design Form = More Forms - Design Report P2 visui
Templates Tables Queries Farms Reports Macros & C
All Acce.. @ <« || -3 Querys '
h Show Table EE
Search. R
TTables A Clen Clanarine Tables | Queres | Both
B X *
f‘j Clan F St_izkaznica g 7 Vrsta_clana Clan
E3 Clanarina Ime L Znesek Clanarina
Priimek r
Maslov
E_naslav
Datum_placila | ¥
[Add] [Close
a4
Field: =]
Table:
Sort:
Show: | [[[(] O
Criteria:
on

Kreiranje poizvedbe poteka tako, da najprej na delovno povrsino dodamo tabele, iz katerih bomo

poizvedovali (to je lahko ena ali ve¢ medsebojno povezanih tabel). V naSem primeru smo dodali
tabeli CLANARINA in CLAN (Slika 77).

Slika 78: Primer QBE in SQL poizvedbe

1 Query1’

3 quemt
Clan

’ SELECT Clan.5t_izkaznica, Clan.Ime, Clan.Priimek, Clan.Vrsta_clana
7 St_izkaznica FROM Clan
Ime WHERE ({(Clan.Vrsta_clana)='Zaposleni')):
Priimek I
Maslov
E_naslov
Datum_placila

Vrsta_clana

A lm

Field: | 5t_izkaznica Ime Priimek Vrsta_clana
Table: | Clan Clan Clan Clan
Sort:

Show:

Criteria: ‘Zaposleni’

Slika 78a: QBE poizvedba Slika 78b: SQL poizvedba

V spodnjem delu te slike se prikaZzejo vrstice, s pomocjo katerih izdelamo poizvedbo. Sistematicen
opis jezika QBE se nahaja v poglavju 6.4. Izpisali bomo Stevilke izkaznic, imena in priimke vseh ¢lanov,
ki so zaposleni. Ker potrebujemo le tabelo CLAN, smo tabelo CLANARINA odstranili. Ce pogledamo
sliko (Slika 76) vidimo, daimamo dva tak$na ¢lana. Slika 78 prikazuje QBE poizvedbo in SELECT stavek
v SQL-u. Da dobimo rezultat, moramo poizvedbo zagnati s klikom na ukaz Run. Poizvedbo 3e

157

poimenujemo npr. Zaposleni_clani in shranimo. Poizvedba se doda v seznam vseh objektov baze v
razdelek namenjen poizvedbam (Queries). Rezultat poizvedbe prikazuje Slika 79.

Slika 79: Rezultat poizvedbe

[A]l = n
Home Create External Data Database Tools
B}\?Z 4 Cut]_? ‘fjlﬁscending \H’/f’ Selection
""" 23 Copy }H Descending Eﬁdvanced e
View Filter R
- A ,f
Views Clipboard Sort & Filter
All Access Obj... ™ « || 3] Zaposleni clani |
Search.. e Stiz~| Ime ~ Priimek - |Vrsta_clana -
Tables % 2 Alenka RoZanec Zaposleni
EH clan 3 Tim Prisel Zaposleni
=:=| Clanarina &
Queries -3
'ﬁj Zaposleni clani

Vprasanja za ponavljanje

1. Kaksno vrsto racunalniskih orodij uporabljamo za konceptualno in logi¢no nacrtovanje
podatkovne baze?

2. Katere so kljuéne funkcionalnosti, ki jih orodja za naértovanje podatkovne baze nudijo

nacértovalcu oziroma katere so njihove prednosti glede na uporabo risarskih orodij ali lista

papirja?

Katera orodja za nacrtovanje podatkovne baze poznate?

Katera orodja za izdelavo fizitne podatkovne baze poznate?

Kako sta ti dve vrsti orodij med seboj povezani?

Katere nacine kreiranja elementov podatkovne baze nudi orodje Oracle APEX?

Katere druge funkcije poleg kreiranja elementov podatkovne baze orodje Oracle APEX Se nudi?

Katere nacine kreiranja elementov podatkovne baze nudi orodje MS Access?

Katere druge funkcije poleg kreiranja elementov podatkovne baze orodje MA Access Se nudi?

© o N U AW

158

9 ReSitve nalog

9.1 Resitve nalog poglavja 4

Resitev naloge 4.1 - Smucarski skoki

Slika 80: Resitev - konceptualni model smucarskih skokov

STATUS SKOKA

Sifra statusa <pi> Integer <M>
Opis statusa Variable characters (40) <M>

Primami Kju¢ <pi>

DRZAVA

Sifra drzave <pi> Integer

<M>

Ime drzave V

ariable characters (20) <M>

Primami Kju¢ <pi>

ima prihaja iz
SKOK i TEKMOVALEC
izvede }]

Zaporedna Stevilka skoka <pi> Number <M> [Sifra tekmovalca <pi> Integer <M>

DolZina skoka Float <M> Ime tekmovalca Variable characters (20) <M>

Ocena za slog Float <M> Priimek tekmovalca Variable characters (20) <M>

Primami Kju¢ <pi> Primami Kju¢ <pi>

je del
TEKMOVANJE poteka | SKAKALNICA

Sifra tekmovanja <pi> Integer <M> " | Sifra skakalnice <pi> Integer <M>
Ime tekmovanja Variable characters (40) <M> Ime skakalnice Variable characters (40) <M>
Zacetek tekmovanja Date & Time <M> Primami Kjug <pi>
Castrajanja Number <M>
Primami Kju¢ <pi>

Resitev naloge 4.2 - Prodajalna avtomobilov TineCars d.o.o0.

Slika 81: Resitev - konceptualni model prodajalne avtomobilov

“|P " Znamka CHAR(1) |
F " Model CHAR (15)
F * Letnik Integer
Cena osnovnega vozila DECIMAL }{— —_
Zaloga Integer | 7 7

Akcija
P " ID_akcija Integer
Ime Ime
Opis CHAR (200 CHAS(S. —
Fopust Fopust e
Datum zaéetha Date
Datum konca Date

. |E= Avto PK (Znamka, Madel, Letnik)

&= Akcija PIK (ID_akeija)

Frodajalec
F * ID_Prodajalec NUMERIC |
Ime CHAR (20)
Priimek CHAR (20) |1

= Prodajalec PK {(ID_Prodajalec) |-

Prodaja
* ID_prodaja NUMERIC
Datum prodaje Datetime
Cena brez DDV DECIMAL
Znesek popusta DECIMAL
Kaonecna cena brez DDV DECIMAL
Konecna cena z DDV DECIMAL
ID_Prodajalec NUMERIC
" Znamka CHAR (15)
" Model CHAR (15)
" Letnik Integer
| |&= Prodaja PK{ID_prodaja)

Rl

159

Dodatna oprema

""""" O |F T ID_oprema Integer
Qpis CHAR (20)
Cena DECIMAL

s= Dodatna oprema PK (ID_oprem

9.2 ReSitve nalog poglavja 5.2
Resitev naloge 5.2.1 - Logi¢ni model (domena smucarskih skokov)

TEKMOVALEC (Sifra tekmovalca, Ime tekmovalca, Priimek tekmovalca, #Sifra drzave)

DRZAVA (Sifra drZave, Ime skakalnice)

SKAKALNICA (Sifra skakalnice, Ime skakalnice)

TEKMOVANIJE (Sifra tekmovanja, Ime tekmovanja, Zacetek tekmovanja, Cas trajanja tekmovanja,
#Sifra skakalnice)

SKOK (Zaporedna $tevilka skoka, #Sifra tekmovalca, #Sifra tekmovanija, DolZina skoka, Ocena za slog,
#Sifra statusa)

STATUS_SKOKA (Sifra statusa, Opis statusa)

Resitev naloge 5.2.2 - Logi¢ni model (domena prodajalna avtomobilov)

AVTO (Znamka, Model, Letnik, Cena, Zaloga)

DODATNA_OPREMA (ID_oprema, Opis, Cena)

PRODAIJALEC (ID_Prodajalec, Ime, Priimek)

AKCUA (ID_Akcija, Ime, Opis, Popust, Datum zacetka, Datum konca)

PRODAIJA (ID_prodaja, Datum prodaje, Cena brez DDV, Znesek popusta, Koncna cena brez DDV,
Koncna cena z DDV, #ID_Prodajalec, #2Znamka, #Model, #Letnik)

Dve novi tabeli, kjer so bile povezave Stevnosti m:n:
DODATNA_OPREMA_ZA_AVTO (#ID_oprema, #Znamka, #Model, #Letnik)
AKCIJA_ZA_AVTO (#ID_akcija, #Znamka, #Model, #Letnik)

Resitev naloge 5.2.3 Logi¢ni model (domena videoteka)

ZVRST (Sifra_zvrsti, Naziv)

FILM (Kat_st, Naslov, Cena_na_dan, Glavni_igralec, Reziser)

IMA_ZANR (#Kat _st, #Sifra_zvrsti) // nova tabela med ZVRST in FILM zaradi povezave m:n
FILM_ZA_IZPOSO0JO (St _filma, Status, #Kat _st, #ID_podruznice)

IZPOSOIJA (St_izposoje, D_izposoje, D_vrnitve, Cena_skupaj, #Clan_st)

CLAN (Clan_st, Ime, Priimek, Datum_reg, #ID_podruznice)

PODRUZNICA (ID_podruznice, Ulica, Tel_st, #Post_st, #1D_manager)

MESTO (Post_st, Kraj)

OSEBIJE (ID_osebja, Ime, Pozicija, Placa, #1D_podruznice)

160

9.3 ReSitve nalog poglavja 5.3

Resitev naloge 5.3.1
Nenormalizirana relacija: Najem (5t_najemnika, Ime_najemnika, (St_nepr, Naslov_nepr, Datum_z,
Datum_k, Cena, St_lastnika, ime_lastnika))

Relacije v 3.NO:
Najemnik (5t_najemnika, Ime_najemnika)
Najem(#St najemnika, #St nepr, Datum_z, Datum_k)
Nepremiénina (St_nepr, Naslov_nepr, Cena, #St_lastnika)
Lastnik(St_lastnika, ime_lastnika)

Resitev naloge 5.3.2
Nenormalizirana relacija: P(SifraKaseta, SifraFilm, NaslovFilm, ReZijaFilm, DolZinaFilm, (EMSO,
ImeStranka, UlicaStranka, PostaStranka, KrajStranka, Caslzposoje))

Relacije v 3.NO:
Kaseta(SifraKaseta, #SifraFilm)
Film(SifraFilm, NaslovFilm, ReZijaFilm, DolZinaFilm)
Izposoja(#Sifrakaseta, #EMSO, Caslzposoje)
Oseba(EMSO0, ImeStranka, UlicaStranka, #PostaStranka)
Kraj (PostaStranka, KrajStranka)

Resitev naloge 5.3.3
Nenormalizirana relacija: R(DavénaSt, Ime, Priimek, Ulica, PostnaSt, Kraj, (Sifralzdelka, Imelzdelka,
SifraKategorije, ImeKategorije, Cena, Kolicina, DatumCasNakupa)).

Relacije v 3.NO:

Oseba (DavénaSt, Ime, Priimek, Ulica, #PostnaSt)
Kraj(PostnaSt, Kraj)

lzdelek (Sifralzdelka, Imelzdelka,Cena, #SifraKategorije)
Kategorija (SifraKategorije, ImeKategorije)
Nakup(#DavénaSt, #Sifralzdelka, DatumCasNakupa, Kolicina)

9.4 Resitve nalog poglavja 6

Resitev naloge 6.3.1 — SQL nad domeno studentskega IS:
a. SELECT * FROM predavatelj
b. SELECT * FROM predmet

c. SELECT naziv, imepriimek
FROM predavatelj

161

d. SELECT vpisnast,emso,to_char(dtrojstva,'dd.mm.rrrr') dtrojstva, naslov||'' | | kraj naslov

FROM student

e. SELECT naziv, imepriimek

FROM predavatelj
WHERE imepriimek LIKE 'M%'

f. SELECT *

FROM student
WHERE kraj LIKE '%Ljubljana%'
AND dtrojstva<to_date('1.1.1995','dd.mm.rrrr')

g. SELECT * FROM predmet

WHERE letnik in (1,2) AND semester='7'
ORDER BY naziv ASC

h. SELECT *
FROM student
WHERE dtrojstva BETWEEN to_date('1.1.1990','dd.mm.rrrr') AND
to_date('1.1.1995','"dd.mm.rrrr'")
ORDER BY dtrojstva DESC

i. SELECT*
FROM student
WHERE naslov IS NOT NULL AND length(vpisnast)=10
ORDER BY imepriimek

Resitev naloge 6.3.2 — SQL nad domeno studentskega IS (poizvedbe nad dvema ali vec tabelami):

a.

SELECT predmet.naziv, predavatelj.naziv, predavatelj.imepriimek
FROM predmet INNER JOIN predavatelj ON predmet.idpredavatelj=predavatelj.id
ORDER BY predmet.naziv, predavatelj.imepriimek

SELECT predmet.naziv, predavatelj.naziv, predavatelj.imepriimek
FROM predmet LEFT OUTER JOIN predavatelj ON predmet.idpredavatelj=predavatel;j .id
ORDER BY predmet.naziv, predavatelj.imepriimek

SELECT predmet.naziv, predavatelj.naziv, predavatelj.imepriimek
FROM predmet RIGHT OUTER JOIN predavatelj ON predmet.idpredavatelj=predavatelj.id
ORDER BY predavatelj.imepriimek

SELECT student.imepriimek, predmet.naziv, predavatelj.imepriimek, indeks.ocena
FROM indeks JOIN student ON indeks.idstudent=student.id

JOIN predmet ON indeks.idpredmet=predmet.id

JOIN predavatelj ON predmet.idpredavatelj=predavatelj.id

162

WHERE indeks.ocena is not null
ORDER BY student.imepriimek

e. SELECT student.imepriimek, predmet.naziv, predavatelj.imepriimek, indeks.ocena,
indeks.ocenavaj
FROM indeks INNER JOIN student ON indeks.idstudent=student.id
INNER JOIN predmet ON indeks.idpredmet=predmet.id
INNER JOIN predavatelj ON predmet.idpredavatelj=predavatelj.id
WHERE indeks.ocena IN (7,8,9) AND predmet.letnik=1
ORDER BY student.imepriimek

Resitev naloge 6.3.3 — SQL nad domeno Studentskega IS (uporaba agregatnih funkcij):

a. SELECT AVG(ocena)
FROM indeks

b. SELECT AVG(ocena)
FROM indeks INNER JOIN predmet ON indeks.idpredmet=predmet.id
WHERE predmet.letnik=1 AND indeks.ocenavaj IS NULL

c. SELECT ocena "Ocena", count(indeks.idstudent) "Stevilo $tudentov z oceno"
FROM indeks
WHERE ocena is NOT NULL
GROUP BY ocena

d. SELECT predmet.letnik "Letnik", AVG(indeks.ocena) "Povprecje"
FROM indeks JOIN predmet ON indeks.idpredmet=predmet.id
WHERE indeks.ocena>5
GROUP BY predmet.letnik
ORDER BY predmet.letnik

e. samo letniki, kjer imajo Studentje povprecno oceno visjo od 8
SELECT predmet.letnik "Letnik", AVG(indeks.ocena) "Povprecje"
FROM indeks INNER JOIN predmet ON indeks.idpredmet=predmet.id
WHERE indeks.ocena>5
GROUP BY predmet.letnik
HAVING AVG(indeks.ocena)>8
ORDER BY predmet.letnik

f. SELECT predmet.naziv, predavatelj.imepriimek
FROM predmet INNER JOIN predavatelj ON predmet.idpredavatelj=predavatelj.id
WHERE predmet.id IN
(SELECT indeks.idpredmet
FROM indeks

163

WHERE indeks.ocena>8)

g. SELECT student.vpisnast, student.imepriimek
FROM student INNER JOIN indeks ON student.id=indeks.idstudent
INNER JOIN predmet ON indeks.idpredmet=predmet.id
WHERE predmet.semester='Z';

h. SELECT student.vpisnast,student.imepriimek "Student", avg(indeks.ocena) "Ocena"
FROM indeks INNER JOIN student ON indeks.idstudent=student.id
WHERE indeks.ocena BETWEEN 6 AND 10
GROUP BY student.vpisnast,student.imepriimek
HAVING AVG(indeks.ocena)>
(SELECT AVG(indeks1.ocena)
FROM indeks indeks1
WHERE indeksl.ocena BETWEEN 6 AND 10)

Resitev naloge 6.3.2 — QBE na domeno trgovskega podjetja

a. lzpisivse trgovine.
4|

Field: |Trgovina.* (=]

Table: |Trgovina
Sort:
Show:
Criteria:
ar:

b. IzpiSe podatke o trgovini "Muca copatarica".

Lhh kil

Field: [ID_trgovine ime_poslovalnice naslov telefan posta
Table: | Trgovina Trgovina Trgovina Trgovina Trgovina
Sort:
Show:
Criteria: “Muca copatarica’

on

164

c. lzpisi vse zaposlene.
[| m

Field: |Zaposleni.® E

Table: |Zaposleni
Sort:
Shows:
Criteria:
or:

d. Izpisi Stevilo vseh zaposlenih v tabeli Zaposleni.
4|

Field: (ID_zaposlenega
Table: | Zaposleni
Total: |Count El
Sort:
Show
Criteria:
ar:

e. lzpisi vse blagajnike (ime, priimek, polozaj) iz tabele Zaposleni.
Il

Field: |ime priimek polozaj
Table: |Zaposleni Zaposleni Zaposleni
Sort:
Showe
Criteria: “Blagajnik”
or:

f. IzpiSi vse zaposlene (ime, priimek, naslov, posta, Posta.naziv_poste), kjer je naziv poste Novo
mesto.

Field: |ime priimek naslov posta naziv_poste

Table: |Zaposleni Zaposleni Zaposleni Zaposleni Posta
Sort:

Showe

Criteria: I'N ovo mesto”
ar:

g. lzpisi vse zaposlene (ime, priimek, naslov, posta), katerih priimek se za¢ne na ¢rko N.

Field: |ime priimek naslov posta
Table: |Zaposleni Zaposleni Zaposleni Zaposleni
Sort:
Show:
Criteria: Like "M*"
or:

165

h. Izpisi vse zaposlene, ki imajo v priimku ¢rko $.

Field: |ime priimek naslov posta
Table: |Zaposleni Zaposleni Zaposleni Zaposleni
Sort:
Show:
Criteria: Like "*§*"
ar:

i. lzpiSi vse zaposlene (ime, priimek, naslov), ki imajo v priimku kot drugo ¢rko o.

Field: |ime priimek naslov
Table: | Zaposleni Zaposleni Zaposleni
Sort:
Showr
Criteria: Like "7o*"
ar:

j- lzpisi Stevilo vseh artiklov.

Field: |koda
Table: | Artikel
Total: [
Sort:
Shows

Criteria:

k. Stevilo razli¢nih artiklov za vsak racun

Hd: [st_racuna koda
Me: [Racun Postavka
tal: | Group By E| Count
art:
A
ria:
ar

|. Skupna koli¢ina prodanih artiklov za vsak rac¢un

4

Field: | st_racuna kolicina

Table: |Racun Postavka

Total: | Group By Sum (]
Sort:

Show:
Criteria:

an

166

m. Za vsakega blagajnika izpisSimo prodano koli¢ino izdelkov, urejeno od tistega, ki je prodal najvec,

navzdol.
Zaposleni Racun Postavka
* * -~ &
¥ ID_zaposlenega L ¥ st_racuna ;_ ¥ ID_postavke
ime _\2 datum = = racun
priimek blagajnik koda
polozaj vrsta_placila kolicina
naslov poslovalnica
posta skupaj_brez_popt
popust_v_odstotk
Field: |ID_zaposlenega kalicina
Table: |Zaposleni Postavka
Total: | Group By sum
Sort: Descending El
Show: O [l]
riteria:

n. IzpiSi blagajnika (ime, priimek), ki je prodal ve¢ kot 15 izdelkov (koli¢ina).
Dodamo Se Crtiteria: >15 v stolpec koli¢ina

Field: |ID_zaposlensga kolicina
Table: | Zapaosleni Postavka
Total: | Group By Sum
Sort: Descending
Showr:
Criteria: =15
ar:
o. Za vsakega blagajnika izpiSi prihodek od prodaje.

Tezava:blagajnik, ki Se nima racunov se ne izpiSe. Gremo na join properties (na povezavo med
tabelama zaposleni in racun in izberemo opcijo2). V SQL dobimo:
FROM Zaposleni LEFT JOIN Racun ON Zaposleni.ID_zaposlenega = Racun.blagajnik

Zaposleni Racun

*

*

»

7 ID_zaposlenega
ime

7 st_racuna

datum
prllmelf blagajnik
polozaj vrsta_placila
naslov poslovalnica

posta

skupaj_brez_popusta
popust_v_odstotkih
vrednost_popusta
skupaj_s_popustom
skupaj_z_ddv

idDDV_kupca

naziv_kupca
HLEND zapaoslenegal E| ime priimek polozaj skupaj_z_ddv
ile: | Zaposleni Zaposleni Zaposleni Zaposleni Racun
tal: |Group By Group By Group By Group By Sum
art:
s
ria: “blagajnik”

167

10 Literatura in viri

© N o v b

10.

11.

12.

13.

14.
15.
16.
17.

18.

19.

Cattell, R.G.G. (2000). The Object Database Standard: ODMG Release 3.0. San Mateo, CA:
Morgan Kaufmann.

Connolly, T. M., Begg, C. E. (2005). Database Systems, A Practical Approach to Design,
Implementation and Management, Fourth Edition, Addison-Wesley.

Connolly, T. M., Begg, C. E. (2010). Database Systems, A Practical Approach to Design,
Implementation and Management, Fifth Edition, Addison-Wesley.

Date, C. J. (1989). A Guide to the SQL Standard. Reading: Addison-Wesley.
Finkelstein, C. (1992). Information Engineering. Reading: Addison-Wesley.
Fowler, M. (1997). UML Distilled. Reading: Addison-Wesley.

Grad, J., Jakli¢, J.(1996). Podatkovne baze. Ljubljana: Ekonomska Fakulteta.

Gradisar, M., Jaklic, J., Turk, T. (2012). Osnove poslovne informatike. Ljubljana:
Ekonomska fakulteta.

Gradisar, M., Resinovi¢, G. (1998). Informatika v organizaciji. Kranj: Moderna organizacija.

Johnson, L. J. (1997). Database Models, Languages, Design. New York: Oxford University
Press.

Korth, F. H,, Silberschatz, A. (1991). Database System Concepts. New York: McGraw-Hill.

Krisper, M. in drugi (2004). Enotna metodologija razvoja informacijskih sistemov. [Zv. 3],
Strukturni razvoj. 2. izd. Ljubljana: Vlada Republike Slovenije, Center Vlade RS za
informatiko.

Lahajnar, S., RoZanec, A. (2000). Nacrtovanje ve¢dimenzionalnih podatkovnih baz.
Uporabna informatika, let. 8, st. 1, str. 5-13.

Mohori¢, T. (1992). Podatkovne baze, Ljubljana: FER.
Mohori¢, T. (1997). Nacrtovanje relacijskih podatkovnih baz, Ljubljana: Bi-TIM.
Ramakrishnan, R., Gehrke, J. (2003). Database Management Systems. McGraw-Hill.

Rob, P., Coronel, C. (2004). Database systems: design, implementation, and management.
Thomson.

Spletna stran: http://en.wikipedia.org/wiki/Object-relational_database [Citirano 5. 2.
2015 ob 11.51 uri].

Spletna stran: http://en.wikipedia.org/wiki/PowerDesigner [Citirano 1. 2. 2015 ob 20.30
uri].

168

http://en.wikipedia.org/wiki/PowerDesigner

20.

21.

22.
23.

Spletna stran: http://sybase-powerdesigner.software.informer.com/16.5/ [Citirano 25. 1.
2015 ob 10.30 uri].

Spletna stran: http://www.oracle.com/technetwork/developer-
tools/datamodeler/downloads/datamodeler-087275.html [Citirano 27. 1. 2015 ob 8.30
uri].

Spletna stran: https://apex.oracle.com [Citirano 25. 1. 2015 ob 17.30 uri].

Stonebraker, M. (1996). Object-Relational DBMSs: The Next Great Wave. San Francisco,
CA: Morgan Kaufmann Publishers Inc.

169

http://sybase-powerdesigner.software.informer.com/16.5/
http://www.oracle.com/technetwork/developer-tools/datamodeler/downloads/datamodeler-087275.html
http://www.oracle.com/technetwork/developer-tools/datamodeler/downloads/datamodeler-087275.html
https://apex.oracle.com/

	1 Uvod v podatkovne baze
	1.1 Podatek in informacija
	1.2 Podatkovna baza
	1.3 Tri-nivojska predstavitev podatkov v podatkovni bazi
	1.4 Mesto podatkovne baze v poslovnem sistemu

	2 Sistem za upravljanje s podatkovno bazo
	2.1 Prednosti uporabe SUPB
	2.2 Funkcije SUPB
	2.2.1 Shranjevanje, pridobivanje in spreminjanje podatkov
	2.2.2 Dostopnost kataloga PB
	2.2.3 Podpora transakcijam
	2.2.4 Sočasni dostop do podatkovne baze
	2.2.5 Obnavljanje podatkovne baze po nesrečah
	2.2.6 Avtorizacijske storitve
	2.2.7 Integritetne storitve
	2.2.8 Storitev podatkovne neodvisnosti
	2.2.9 Administratorska orodja
	2.2.10 Podpora komuniciranju

	2.3 Komponente okolja SUPB
	2.4 Delovanje SUPB
	2.5 Naloge skrbnika podatkovne baze

	3 Podatkovni modeli in vrste SUPB
	3.1 Hierarhični podatkovni model
	3.2 Mrežni podatkovni model
	3.3 Relacijski podatkovni model
	3.4 Objektni podatkovni model
	3.5 Objektno-relacijski podatkovni model
	3.6 Primerjava različnih vrst podatkovnih modelov oziroma SUPB

	4 Konceptualno načrtovanje podatkovne baze
	4.1 Tehnike konceptualnega načrtovanja
	4.2 Gradniki konceptualnega modela
	4.2.1 Entitetni tip
	4.2.2 Atribut
	4.2.3 Razmerje

	4.3 Konceptualno načrtovanje podatkovne baze na primeru skladišča
	4.3.1 Opis domene
	4.3.2 Izdelava konceptualnega podatkovnega modela
	4.3.3 Konceptualni podatkovni model skladišča

	4.4 Pristopi k načrtovanju podatkovne baze

	5 Relacijska podatkovna baza
	5.1 Relacijska teorija
	5.1.1 Relacija
	5.1.2 Relacijska shema
	5.1.3 Funkcionalne odvisnosti

	5.2 Logično načrtovanje
	5.2.1 Transformacija konceptualnega modela v relacijski model
	5.2.2 Omejitve nad podatkovno bazo
	5.2.3 Logično načrtovanje podatkovne baze na primeru picerije

	5.3 Normalizacija
	5.3.1 Vrste ažurnih anomalij
	5.3.1.1 Dodajanje zapisov
	5.3.1.2 Brisanje zapisov
	5.3.1.3 Spreminjanje zapisov

	5.3.2 Prva normalna oblika
	5.3.3 Druga normalna oblika
	5.3.4 Tretja normalna oblika
	5.3.5 Četrta poslovna normalna oblika
	5.3.6 Normalizacija relacije z uporabo podatkov nenormalizirane tabele

	5.4 Fizično načrtovanje
	5.4.1 Izdelava SQL skripte
	5.4.2 Datotečne organizacije
	5.4.3 Indeksiranje
	5.4.4 Analiza transakcij
	5.4.5 Ocena velikosti podatkovne baze
	5.4.6 Varnost podatkovne baze
	5.4.7 Denormalizacija

	5.5 Spremljanje delovanja in optimizacija podatkovne baze

	6 Jeziki za delo z relacijsko podatkovno bazo
	6.1 Relacijska algebra
	6.2 Relacijski račun
	6.3 SQL
	6.3.1 SQL DDL
	6.3.1.1 Kreiranje tabel
	6.3.1.2 Kreiranje indeksov
	6.3.1.3 Kreiranje pogledov
	6.3.1.4 Definiranje omejitev
	6.3.1.5 Brisanje gradnikov podatkovne baze
	6.3.1.6 Dodeljevanje in odvzemanje pravic

	6.3.2 SQL DML
	6.3.2.1 Dodajanje podatkov - INSERT
	6.3.2.2 Spreminjanje podatkov – UPDATE
	6.3.2.3 Brisanje podatkov – DELETE
	6.3.2.4 Poizvedbe – SELECT

	6.4 QBE
	6.4.1 Enostavne poizvedbe
	6.4.2 Uporaba agregatnih funkcij

	6.5 Izvajanje in optimizacija poizvedb
	6.5.1 O izvajanju poizvedb
	6.5.2 Dekompozicija poizvedbe
	6.5.3 Optimizacija poizvedbe

	7 Objektna podatkovna baza
	7.1 Objektni SUPB
	7.2 Načrtovanje objektne podatkovne baze
	7.2.1 Razred
	7.2.2 Asociacija
	7.2.3 Druge posebnosti objektnega načrtovanja

	7.3 Razširjeni podatkovni tipi
	7.4 Standard ODMG
	7.4.1 Objektni model
	7.4.2 ODL (Object Definition Language)
	7.4.3 OQL (Object Query Language)

	8 Orodja za delo s podatkovnimi bazami
	8.1 SAP Sybase PowerDesigner
	8.1.1 Izdelava konceptualnega modela trgovine
	8.1.2 Izdelava logičnega modela trgovine
	8.1.3 Izdelava fizičnega modela trgovine

	8.2 Oracle SQL Developer Data Modeler
	8.2.1 Izdelava logičnega modela knjižnice
	8.2.2 Izdelava relacijskega modela knjižnice
	8.2.3 Izdelava fizičnega modela knjižnice

	8.3 Oracle APEX
	8.3.1 Kreiranje baze iz predhodno pripravljene SQL skripte
	8.3.2 Pregled in ročno kreiranje različnih objektov podatkovne baze
	8.3.3 Uporaba jezika SQL v APEX-u

	8.4 MS Access
	8.4.1 Ročno kreiranje podatkovne baze v MS Accesu
	8.4.2 Poizvedovanje z uporabo jezika QBE

	9 Rešitve nalog
	9.1 Rešitve nalog poglavja 4
	9.2 Rešitve nalog poglavja 5.2
	9.3 Rešitve nalog poglavja 5.3
	9.4 Rešitve nalog poglavja 6

	10 Literatura in viri
	Platnica_A4-naslovna.pdf
	Page 1

	Prazna stran
	Platnica_A4-zadnja.pdf
	Page 1

